23 research outputs found

    Femtosecond laser crystallization of amorphous Ge

    Get PDF
    Cataloged from PDF version of article.Ultrafast crystallization of amorphous germanium (a-Ge) in ambient has been studied. Plasma enhanced chemical vapor deposition grown a-Ge was irradiated with single femtosecond laser pulses of various durations with a range of fluences from below melting to above ablation threshold. Extensive use of Raman scattering has been employed to determine post solidification features aided by scanning electron microscopy and atomic force microscopy measurements. Linewidth of the Ge optic phonon at 300 cm(-1) as a function of laser fluence provides a signature for the crystallization of a-Ge. Various crystallization regimes including nanostructures in the form of nanospheres have been identified. (C) 2011 American Institute of Physics. [doi:10.1063/1.3601356

    Crystallization of Ge in SiO2 matrix by femtosecond laser processing

    Get PDF
    Cataloged from PDF version of article.Germanium nanocrystals embedded in a siliconoxide matrix has been fabricated by single femtosecond laser pulse irradiation of germanium doped SiO2 thin films deposited with plasma enhanced chemical vapor deposition. SEM and AFM are used to analyze surface modification induced by laser irradiation. Crystallization of Ge in the oxide matrix is monitored with the optic phonon at 300 cm(-1) as a function of laser fluence. Both the position the linewidth of the phonon provides clear signature for crystallization of Ge. In PL experiments, strong luminescence around 600 nm has been observed. (C) 2012 American Vacuum Society. [DOI: 10.1116/1.3677829

    A piezoelectric microvalve for compact high frequency high differential pressure micropumping systems

    No full text
    A piezoelectrically driven hydraulic amplification microvalve for use in compact high-performance hydraulic pumping systems was designed, fabricated, and experimentally characterized. High-frequency, high-force actuation capabilities were enabled through the incorporation of bulk piezoelectric material elements beneath a micromachined annular tethered-piston structure. Large valve stroke at the microscale was achieved with an hydraulic amplification mechanism that amplified (40/spl times/-50/spl times/) the limited stroke of the piezoelectric material into a significantly larger motion of a micromachined valve membrane with attached valve cap. These design features enabled the valve to meet simultaneously a set of high frequency (/spl ges/1 kHz), high pressure(/spl ges/300 kPa), and large stroke (20-30 /spl mu/m) requirements not previously satisfied by other hydraulic flow regulation microvalves. This paper details the design, modeling, fabrication, assembly, and experimental characterization of this valve device. Fabrication challenges are detailed

    Electrochemically tunable ultrafast optical response of graphene oxide

    Get PDF
    Cataloged from PDF version of article.We demonstrate reversible and irreversible changes in the ultrafast optical response of multilayer graphene oxide thin films upon electrical and optical stimulus. The reversible effects are due to electrochemical modification of graphene oxide, which allows tuning of the optical response by externally applied bias. Increasing the degree of reduction in graphene oxide causes excited state absorption to gradually switch to saturable absorption for shorter probe wavelengths. Spectral and temporal properties as well as the sign of the ultrafast response can be tuned either by changing the applied bias or exposing to high intensity femtosecond pulses. © 2011 American Institute of Physics

    Encapsulation of a zinc phthalocyanine derivative in self-assembled peptide nanofibers

    Get PDF
    Cataloged from PDF version of article.In this article, we demonstrate encapsulation of octakis(hexylthio) zinc phthalocyanine molecules by non-covalent supramolecular organization within self-assembled peptide nanofibers. Peptide nanofibers containing octakis(hexylthio) zinc phthalocyanine molecules were obtained via a straight-forward one-step self-assembly process under aqueous conditions. Nanofiber formation results in the encapsulation and organization of the phthalocyanine molecules, promoting ultrafast intermolecular energy transfer. The morphological, mechanical, spectroscopic and non-linear optical properties of phthalocyanine containing peptide nanofibers were characterized by TEM, SEM, oscillatory rheology, UV-Vis, fluorescence, ultrafast pump-probe and circular dichroism spectroscopy techniques. The ultrafast pump-probe experiments of octakis(hexylthio) zinc phthalocyanine molecules indicated pH controlled non-linear optical characteristics of the encapsulated molecules within self-assembled peptide nanofibers. This method can provide a versatile approach for bottom-up fabrication of supramolecular organic electronic devices. © 2012 The Royal Society of Chemistry

    Tunable Plexcitonic Nanoparticles: A Model System for Studying Plasmon-Exciton Interaction from the Weak to the Ultrastrong Coupling Regime

    No full text
    Controlling the number of dye molecules on metallic nanoparticles, which in turn affects the magnitude of Rabi splitting energy, is crucial for obtaining hybrid metal core-organic shell nanoparticles with tunable optical properties in the visible spectrum since the magnitude of the Rabi splitting energy directly determines the strength of the coupling between plasmonic nanoparticles and dye molecules. In this work, we present a new method for the synthesis of plexcitonic nanoparticles, and thus we are able to control the number of dye molecules self-assembled on Ag nanoprisms (Ag NPs) by adjusting the concentration of dye molecules used in the synthesis. Indeed, individual dye molecules self-assemble into J-aggregates on Ag NPs. Thus, in the finite-element simulations and experimental data of the hybrid metal organic nanoparticles, we observed a transition from weak coupling to the ultrastrong coupling regime. Besides, ultrafast energy transfer between plasmonic nanoparticles and excitonic aggregated dye molecules has been extensively studied as a function of Rabi splitting energy. We observe that the lifetime of the polariton states increases with the coupling strength and the upper polaritons are short-lived, whereas the lower polaritons are long-lived. Hybrid metal-organic nanoparticles presented in this study (i) have tunable Rabi splitting energies, (ii) are easy to prepare in large quantities in aqueous medium, (iii) can be uniformly assembled on solid substrates, (iv) have resonance frequencies in the visible spectrum, and (v) have small mode volume, thus making them an excellent model system for studying light-matter interaction at nanoscale dimensions from the weak to ultrastrong coupling regime

    Attractive versus repulsive excitonic interactions of colloidal quantum dots control blue- to red-shifting (and non-shifting) amplified spontaneous emission

    No full text
    Tunable, high-performance, two-photon absorption (TPA)-based amplified spontaneous emission (ASE) from near-unity quantum efficiency colloidal quantum dots (CQDs) is reported. Besides the absolute spectral tuning of ASE, the relative spectral tuning of ASE peak with respect to spontaneous emission was shown through engineering excitonic interactions in quasi-type-II CdSe/CdS core/shell CQDs. With core-shell size adjustments, it was revealed that Coulombic exciton-exciton interactions can be tuned to be attractive (type-I-like) or repulsive (type-II-like) leading to red- or blue-shifted ASE peak, respectively, and that nonshifting ASE can be achieved with the right core-shell combinations. The possibility of obtaining ASE at a specific wavelength from both type-I-like and type-II-like CQDs was also demonstrated. The experimental observations were supported by parametric quantum-mechanical modeling, shedding light on the type-tunability. These excitonically engineered CQD-solids exhibited TPA-based ASE threshold as low as 6.5 mJ/cm2 under 800 nm excitation, displaying one of the highest values of TPA cross-section of 44 660 GM. © 2013 American Chemical Society

    Fabrication of a microvalve with piezoelectric actuation

    No full text
    The fabrication of an active MEMS microvalve driven by integrated bulk single crystal piezoelectric actuators is reported. The valve has a nine-layer structure composed of glass, silicon, and silicon on insulator (SOI) layers assembled by wafer-level fusion bonding and anodic bonding, as well as die-level anodic bonding and eutectic bonding. Valve head strokes as large as 20 ?m were realized through hydraulic amplification of the small stroke of the piezoelectric actuator. A flow rate of 0.21 ml/s was obtained at 1 kHz. The fabrication, bonding and assembly process, as well as some test results are described
    corecore