6,811 research outputs found

    DECIGO/BBO as a probe to constrain alternative theories of gravity

    Full text link
    We calculate how strongly one can constrain the alternative theories of gravity with deci-Hz gravitational wave interferometers such as DECIGO and BBO. Here we discuss Brans-Dicke theory and massive graviton theories as typical examples. We consider the inspiral of compact binaries composed of a neutron star (NS) and an intermediate mass black hole (IMBH) for Brans-Dicke (BD) theory and those composed of a super massive black hole (SMBH) and a black hole (SMBH) for massive graviton theories. Using the restricted 2PN waveforms including spin effects and taking the spin precession into account, we perform the Monte Carlo simulations of 10410^4 binaries to estimate the determination accuracy of binary parameters including the Brans-Dicke parameter ωBD\omega_{\mathrm{BD}} and the graviton Compton length λg\lambda_g. Assuming a (1.4,10)M(1.4, 10)M_{\odot} NS/BH binary of SNR=200\sqrt{200}, the constraint on ωBD\omega_{\mathrm{BD}} is obtained as ωBD>2.32×106\omega_{\mathrm{BD}}>2.32\times 10^6, which is 300 times stronger than the estimated constraint from LISA observation. Furthermore, we find that, due to the expected large merger rate of NS/BH binaries of O(104)O(10^4) yr1^{-1}, a statistical analysis yields ωBD>3.77×108\omega_{\mathrm{BD}}>3.77\times10^8, which is 4 orders of magnitude stronger than the current strongest bound obtained from the solar system experiment. For massive graviton theories, assuming a (106,105)M(10^6, 10^5)M_{\odot} BH/BH binary at 3Gpc, one can put a constraint λg>3.35×1020\lambda_g>3.35\times10^{20}cm, on average. This is three orders of magnitude stronger than the one obtained from the solar system experiment. From these results, it is understood that DECIGO/BBO is a very powerful tool for constraining alternative theories of gravity, too.Comment: 4 pages, 3 figures; Accepted to Prog. Theor. Phys. Letters; Many interpretations and some references have been added; Some Coding errors being corrected and the final constraints came out stronge

    Thermodynamic properties and bulk viscosity near phase transition in the Z(2) and O(4) models

    Full text link
    We investigate the thermodynamic properties including equation of state, the trace anomaly, the sound velocity and the specific heat, as well as transport properties like bulk viscosity in the Z(2) and O(4) models in the Hartree approximation of Cornwall-Jackiw-Tomboulis (CJT) formalism. We study these properties in different cases, e.g. first order phase transition, second order phase transition, crossover and the case without phase transition, and discuss the correlation between the bulk viscosity and the thermodynamic properties of the system. We find that the bulk viscosity over entropy density ratio exhibits an upward cusp at the second order phase transition, and a sharp peak at the 1st order phase transition. However, this peak becomes smooth or disappears in the case of crossover. This indicates that at RHIC, where there is no real phase transition and the system experiences a crossover, the bulk viscosity over entropy density might be small, and it will not affect too much on hadronization. We also suggest that the bulk viscosity over entropy density ratio is a better quantity than the shear viscosity over entropy density ratio to locate the critical endpoint.Comment: 19 pages, 30 figures, 1 tabl

    Spectral Continuity in Dense QCD

    Full text link
    The vector mesons in three-flavor quark matter with chiral and diquark condensates are studied using the in-medium QCD sum rules. The diquark condensate leads to a mass splitting between the flavor-octet and flavor-singlet channels. At high density, the singlet vector meson disappears from the low-energy spectrum, while the octet vector mesons survive as light excitations with a mass comparable to the fermion gap. A possible connection between the light gluonic modes and the flavor-octet vector mesons at high density is also discussed.Comment: 4 pages, 3 figures; version to appear in Phys. Rev.

    Lower limit on the entropy of black holes as inferred from gravitational wave observations

    Full text link
    Black hole (BH) thermodynamics was established by Bekenstein and Hawking, who made abstract theoretical arguments about the second law of thermodynamics and quantum theory in curved spacetime respectively. Testing these ideas experimentally has, so far, been impractical because the putative flux of Hawking radiation from astrophysical BHs is too small to be distinguished from the rest of the hot environment. Here, it is proposed that the spectrum of emitted gravitational waves (GWs) after the merger of two BHs, in particular the spectrum of GW150914, can be used to infer a lower limit on the magnitude of the entropy of the post-merger BH. This lower bound is potentially significant as it could be of the same order as the Bekenstein-Hawking entropy. To infer this limit, we first assume that the result of the merger is an ultracompact object with an external geometry which is Schwarzschild or Kerr, but with an outer surface which is capable of reflecting in-falling GWs rather than fully absorbing them. If the absence of deviations from the predictions of general relativity in detected GW signals will be verified, we will then obtain a bound on the minimal redshift factor of GWs that emerge from the vicinity of the object's surface. This lack of deviations would also mean that the remnant of the merger has to have a strongly absorbing surface and must then be a BH for all practical purposes. We conclude that a relationship between the minimal redshift factor and the BH entropy, which was first proposed by 't Hooft, could then be used to set a lower bound on the entropy of the post-merger BH.Comment: Corrected error in estimation of current bounds on the entropy. Improved discussion of energy stored in echoes, V3 replaced to match published version, clarifications and explanations adde

    Analysis of research stocktaking in the Paddy Rice Research Group of the Global Research Alliance on Agricultural Greenhouse Gases

    Get PDF
    Session 2: Nitrogen, Green House Gasses and Agricultur

    New Critical Point Induced by the Axial Anomaly in Dense QCD

    Get PDF
    We study the interplay between chiral and diquark condensates within the framework of the Ginzburg-Landau free energy, and classify possible phase structures of two and three-flavor massless QCD. The QCD axial anomaly acts as an external field applied to the chiral condensate in a color superconductor and leads to a crossover between the broken chiral symmetry and the color superconducting phase, and, in particular, to a new critical point in the QCD phase diagram.Comment: 4 pages, 4 figures included, version to appear in Phys. Rev. Let

    Gravitation-Wave Emission in Shift-Symmetric Horndeski Theories

    Get PDF
    Gravity theories beyond general relativity typically predict dipolar gravitational emission by compact-star binaries. This emission is sourced by "sensitivity" parameters depending on the stellar compactness. We introduce a general formalism to calculate these parameters, and show that in shift-symmetric Horndeski theories stellar sensitivities and dipolar radiation vanish, provided that the binary's dynamics is perturbative (i.e., the post-Newtonian formalism is applicable) and cosmological-expansion effects can be neglected. This allows one to reproduce the binary-pulsar-observed orbital decay
    corecore