33 research outputs found

    Energy-Efficient Beamforming Design for Integrated Sensing and Communications Systems

    Full text link
    In this paper, we investigate the design of energy-efficient beamforming for an ISAC system, where the transmitted waveform is optimized for joint multi-user communication and target estimation simultaneously. We aim to maximize the system energy efficiency (EE), taking into account the constraints of a maximum transmit power budget, a minimum required signal-to-interference-plus-noise ratio (SINR) for communication, and a maximum tolerable Cramer-Rao bound (CRB) for target estimation. We first consider communication-centric EE maximization. To handle the non-convex fractional objective function, we propose an iterative quadratic-transform-Dinkelbach method, where Schur complement and semi-definite relaxation (SDR) techniques are leveraged to solve the subproblem in each iteration. For the scenarios where sensing is critical, we propose a novel performance metric for characterizing the sensing-centric EE and optimize the metric adopted in the scenario of sensing a point-like target and an extended target. To handle the nonconvexity, we employ the successive convex approximation (SCA) technique to develop an efficient algorithm for approximating the nonconvex problem as a sequence of convex ones. Furthermore, we adopt a Pareto optimization mechanism to articulate the tradeoff between the communication-centric EE and sensing-centric EE. We formulate the search of the Pareto boundary as a constrained optimization problem and propose a computationally efficient algorithm to handle it. Numerical results validate the effectiveness of our proposed algorithms compared with the baseline schemes and the obtained approximate Pareto boundary shows that there is a non-trivial tradeoff between communication-centric EE and sensing-centric EE, where the number of communication users and EE requirements have serious effects on the achievable tradeoff

    Actively implementing an evidence-based feeding guideline for critically ill patients (NEED): a multicenter, cluster-randomized, controlled trial

    Get PDF
    Background: Previous cluster-randomized controlled trials evaluating the impact of implementing evidence-based guidelines for nutrition therapy in critical illness do not consistently demonstrate patient benefits. A large-scale, sufficiently powered study is therefore warranted to ascertain the effects of guideline implementation on patient-centered outcomes. Methods: We conducted a multicenter, cluster-randomized, parallel-controlled trial in intensive care units (ICUs) across China. We developed an evidence-based feeding guideline. ICUs randomly allocated to the guideline group formed a local "intervention team", which actively implemented the guideline using standardized educational materials, a graphical feeding protocol, and live online education outreach meetings conducted by members of the study management committee. ICUs assigned to the control group remained unaware of the guideline content. All ICUs enrolled patients who were expected to stay in the ICU longer than seven days. The primary outcome was all-cause mortality within 28 days of enrollment. Results: Forty-eight ICUs were randomized to the guideline group and 49 to the control group. From March 2018 to July 2019, the guideline ICUs enrolled 1399 patients, and the control ICUs enrolled 1373 patients. Implementation of the guideline resulted in significantly earlier EN initiation (1.20 vs. 1.55 mean days to initiation of EN; difference − 0.40 [95% CI − 0.71 to − 0.09]; P = 0.01) and delayed PN initiation (1.29 vs. 0.80 mean days to start of PN; difference 1.06 [95% CI 0.44 to 1.67]; P = 0.001). There was no significant difference in 28-day mortality (14.2% vs. 15.2%; difference − 1.6% [95% CI − 4.3% to 1.2%]; P = 0.42) between groups. Conclusions: In this large-scale, multicenter trial, active implementation of an evidence-based feeding guideline reduced the time to commencement of EN and overall PN use but did not translate to a reduction in mortality from critical illness. Trial registration: ISRCTN, ISRCTN12233792. Registered November 20th, 2017

    Actively implementing an evidence-based feeding guideline for critically ill patients (NEED): a multicenter, cluster-randomized, controlled trial.

    Get PDF
    BackgroundPrevious cluster-randomized controlled trials evaluating the impact of implementing evidence-based guidelines for nutrition therapy in critical illness do not consistently demonstrate patient benefits. A large-scale, sufficiently powered study is therefore warranted to ascertain the effects of guideline implementation on patient-centered outcomes.MethodsWe conducted a multicenter, cluster-randomized, parallel-controlled trial in intensive care units (ICUs) across China. We developed an evidence-based feeding guideline. ICUs randomly allocated to the guideline group formed a local "intervention team", which actively implemented the guideline using standardized educational materials, a graphical feeding protocol, and live online education outreach meetings conducted by members of the study management committee. ICUs assigned to the control group remained unaware of the guideline content. All ICUs enrolled patients who were expected to stay in the ICU longer than seven days. The primary outcome was all-cause mortality within 28 days of enrollment.ResultsForty-eight ICUs were randomized to the guideline group and 49 to the control group. From March 2018 to July 2019, the guideline ICUs enrolled 1399 patients, and the control ICUs enrolled 1373 patients. Implementation of the guideline resulted in significantly earlier EN initiation (1.20 vs. 1.55 mean days to initiation of EN; difference - 0.40 [95% CI - 0.71 to - 0.09]; P = 0.01) and delayed PN initiation (1.29 vs. 0.80 mean days to start of PN; difference 1.06 [95% CI 0.44 to 1.67]; P = 0.001). There was no significant difference in 28-day mortality (14.2% vs. 15.2%; difference - 1.6% [95% CI - 4.3% to 1.2%]; P = 0.42) between groups.ConclusionsIn this large-scale, multicenter trial, active implementation of an evidence-based feeding guideline reduced the time to commencement of EN and overall PN use but did not translate to a reduction in mortality from critical illness.Trial registrationISRCTN, ISRCTN12233792 . Registered November 20th, 2017

    Actively implementing an evidence-based feeding guideline for critically ill patients (NEED): a multicenter, cluster-randomized, controlled trial (vol 26, 46, 2022)

    Get PDF
    BackgroundPrevious cluster-randomized controlled trials evaluating the impact of implementing evidence-based guidelines for nutrition therapy in critical illness do not consistently demonstrate patient benefits. A large-scale, sufficiently powered study is therefore warranted to ascertain the effects of guideline implementation on patient-centered outcomes.MethodsWe conducted a multicenter, cluster-randomized, parallel-controlled trial in intensive care units (ICUs) across China. We developed an evidence-based feeding guideline. ICUs randomly allocated to the guideline group formed a local "intervention team", which actively implemented the guideline using standardized educational materials, a graphical feeding protocol, and live online education outreach meetings conducted by members of the study management committee. ICUs assigned to the control group remained unaware of the guideline content. All ICUs enrolled patients who were expected to stay in the ICU longer than seven days. The primary outcome was all-cause mortality within 28 days of enrollment.ResultsForty-eight ICUs were randomized to the guideline group and 49 to the control group. From March 2018 to July 2019, the guideline ICUs enrolled 1399 patients, and the control ICUs enrolled 1373 patients. Implementation of the guideline resulted in significantly earlier EN initiation (1.20 vs. 1.55 mean days to initiation of EN; difference - 0.40 [95% CI - 0.71 to - 0.09]; P = 0.01) and delayed PN initiation (1.29 vs. 0.80 mean days to start of PN; difference 1.06 [95% CI 0.44 to 1.67]; P = 0.001). There was no significant difference in 28-day mortality (14.2% vs. 15.2%; difference - 1.6% [95% CI - 4.3% to 1.2%]; P = 0.42) between groups.ConclusionsIn this large-scale, multicenter trial, active implementation of an evidence-based feeding guideline reduced the time to commencement of EN and overall PN use but did not translate to a reduction in mortality from critical illness.Trial registrationISRCTN, ISRCTN12233792 . Registered November 20th, 2017

    Community Intervention System: COVID-19 Control in Inner Mongolia Autonomous Region, China

    No full text
    The COVID-19 epidemic has caused giant influences on people’s life, and China’s communities play an important role in dealing with these major public health events (MPHEs). Community as the grassroots autonomous organization has various significant functions in intervening in MPHEs. The community intervention follows a system which directly influences the anti-epidemic effectiveness. To explore the mechanism, we devise a theoretical system for community intervention, mainly consisting of “organizational structure”, “functional performance” and “internal and external connections”. Questionnaire surveys, the chi-square test, the independent sample T-test, and principal component analysis are used to identify the characteristics of Inner Mongolia Autonomous Region’s (Inner Mongolia) community intervention. Through the empirical research, it is verified that the community intervention in MPHEs is the combination of “the structural response of the organization”, “the performance of the community’s own function”, and “the establishment of internal and external connections”. The central Inner Mongolia delivers the best performance in community intervention compared to eastern Inner Mongolia and western Inner Mongolia. The urban communities commonly perform better than that in the agricultural and pastoral areas. The built system and findings could provide a guidance for future community to improve its intervention capability

    Evaluation of Surface Integrity in 18CrNiMo7-6 Steel after Multiple Abrasive Waterjet Peening Process

    No full text
    Abrasive waterjet peening (AWJP) as an important surface strengthening method can effectively improve surface properties. In this study, after multiple AWJP, the distribution of compressive residual stress and roughness on the surface of 18CrNiMo7-6 steel has been evaluated by an X-ray diffraction (XRD) method and a 3D surface topography system, respectively. Compared with the single AWJP, multiple AWJP can obviously increase the surface residual stresses (−1024 MPa to −1455 MPa) and the depth of maximum compressive residual stress (100 μm to 120 μm), as well as make the stress distribution more uniform. In terms of the surface roughness, multiple AWJP influences its uniform distribution and reduces the surface roughness (Sa = 0.69 μm), compared with a single AWJP (Sa = 2.96 μm), due to the smaller shot balls and a uniform deformation during multiple AWJP. In addition, we have studied the effects of multiple AWJP on the hardness of the surface layer. The results show that multiple AWJP increases the hardness by up to 15.9%, compared to the single AWJP. These studies provide useful insight into improving the surface properties of 18CrNiMo7-6 steel by multiple AWJP

    Spatial Profiling of Gibberellins in a Single Leaf Based on Microscale Matrix Solid-Phase Dispersion and Precolumn Derivatization Coupled with Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry

    No full text
    A spatial-resolved analysis method for profiling of gibberellins (GAs) in a single leaf was developed on the basis of microscale sample preparation and precolumn derivatization coupled with ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The proposed microscale sample preparation was based on modified matrix solid-phase dispersion (MSPD) method, in which the plant sample (<1 mg) and C18 sorbent were ground together in one microcentrifuge tube, and then extraction solvent was added followed by centrifugation. In this protocol, the grinding, extraction, and purification were performed in one microcentrifuge tube-without any sample transfer step, resulting in an obvious decrease in sample loss. Moreover, a "new derivatization reagent, 3-bromopropyltrimethylaimnonium bromide (BPTAB), was used to further enhance the signal intensities of GAs on MS by 3-4 orders of magnitude, which was much higher than the reported derivatization reagents for GAs such as bromocholine bromide and 3-bromoactonyltrimethylammonium bromide. The present method showed high sensitivity (minimum detectable amount (MDA) of 10.1-72.3 amol for eight GAs) and low sample consumption (down to 0.30 mg FW). Under the optimized conditions, the distribution of GA(19) in a single Arabidopsis thaliana leaf was profiled with a spatial resolution of 2 X 2 mm(2)

    Identification and optimization methods for delineating ecological red lines in Sichuan Province of southwest China

    No full text
    Ecological red lines (ERLs) are one of innovation regional ecological management systems, and a major strategy of construction of ecological civilization of China. Assessments of ecosystem services and the ecological sensitivity of the environment are the conventional methods for ERL delineation, which cannot quickly identify protection patterns, and also lacks the recognition of geological and geographical processes mechanism and influencing factors of ERLs. However, this omission may lead to inaccurate ERL delineation in mountainous areas. This study constructed an ecological–geological (eco–geo) environment vulnerability assessment index system to quickly identify protection patterns and optimize conventional ERL, taking Sichuan Province of Southwest China as the study region. The results showed that the conventional ERL covered 148,000 km2, accounting for 30.45 % of the total area. The extreme and severe vulnerability areas in the eco–geo environment together covered 189,700 km2, accounting for 39.10 %. The conventional ERL was almost completely included in the extreme vulnerability zone. Two optimization methods were analyzed by overlaying the vulnerability zone (extreme/extreme and severe) on nature reserves and the conventional ERLs. The first scheme covered an area of 188,600 km2 and 238,400 km2 for extreme and extreme and severe vulnerability, respectively; this reflected a more comprehensive vulnerability and protection pattern. The second scheme covered 197,600 km2 and 241,700 km2 for extreme and extreme and severe vulnerability, respectively, and could rapidly identify the vulnerability zones and protected areas. The study found that the geological and geographical processes in mountainous areas were the key factors shaping the ERLs. The assessment and the two schemes on provincial scale were practical, referential for similar mountainous area of China, and also be applied to other scales, serving the comprehensive management of ERL and the regional ecological security
    corecore