1 research outputs found

    Long quantum channels for high-quality entanglement transfer

    Full text link
    High-quality quantum-state and entanglement transfer can be achieved in an unmodulated spin bus operating in the ballistic regime, which occurs when the endpoint qubits A and B are coupled to the chain by an exchange interaction j0j_0 comparable with the intrachain exchange. Indeed, the transition amplitude characterizing the transfer quality exhibits a maximum for a finite optimal value j0opt(N)j_0^{opt}(N), where NN is the channel length. We show that j0opt(N)j_0^{opt}(N) scales as Nโˆ’1/6N^{-1/6} for large NN and that it ensures a high-quality entanglement transfer even in the limit of arbitrarily long channels, almost independently of the channel initialization. For instance, the average quantum-state transmission fidelity exceeds 90% for any chain length. We emphasize that, taking the reverse point of view, should j0j_0 be experimentally constrained, high-quality transfer can still be obtained by adjusting the channel length to its optimal value.Comment: 12 pages, 9 figure
    corecore