852 research outputs found

    Reexamining charmless B\to PV decays in QCD factorization approach

    Full text link
    Using the QCD factorization approach, we reexamine the two-body hadronic charmless BB-meson decays to final states involving a pseudoscalar~(PP) and a vector~(VV) meson, with inclusion of the penguin contractions of spectator-scattering amplitudes induced by the bDggb\to D g^\ast g^\ast~(where D=dD=d or ss, and gg^\ast denotes an off-shell gluon) transitions, which are of order αs2\alpha_s^2. Their impacts on the CP-averaged branching ratios and CP-violating asymmetries are examined. We find that these higher order penguin contraction contributions have significant impacts on some specific decay modes. Since BπKB\to \pi K^{\ast}, KρK \rho decays involve the same electro-weak physics as BπKB\to \pi K puzzles, we present a detailed analysis of these decays and find that the five R-ratios for BπKB\to \pi K^{\ast}, KρK \rho system are in agreement with experimental data except for R(πK)R(\pi K^*). Generally, these new contributions are found to be important for penguin-dominated BPVB\to PV decays.Comment: 45 pages, 12 figures. Theoretical uncertainties considered. Gauge invariance proved. Version to appear in PR

    Electron transport through Al-ZnO-Al: an {\it ab initio} calculation

    Get PDF
    The electron transport properties of ZnO nano-wires coupled by two aluminium electrodes were studied by {\it ab initio} method based on non-equilibrium Green's function approach and density functional theory. A clearly rectifying current-voltage characteristics was observed. It was found that the contact interfaces between Al-O and Al-Zn play important roles in the charge transport at low bias voltage and give very asymmetric I-V characteristics. When the bias voltage increases, the negative differential resistance occurs at negative bias voltage. The charge accumulation was calculated and its behavior was found to be well correlated with the I-V characteristics. We have also calculated the electrochemical capacitance which exhibits three plateaus at different bias voltages which may have potential device application.Comment: 10 pages, 6 figure

    Dissipative dynamics in a tunable Rabi dimer with periodic harmonic driving

    Full text link
    Recent progress on qubit manipulation allows application of periodic driving signals on qubits. In this study, a harmonic driving field is added to a Rabi dimer to engineer photon and qubit dynamics in a circuit quantum electrodynamics device. To model environmental effects, qubits in the Rabi dimer are coupled to a phonon bath with a sub-Ohmic spectral density. A non-perturbative treatment, the Dirac-Frenkel time-dependent variational principle together with the multiple Davydov D2_2 {\it Ansatz} is employed to explore the dynamical behavior of the tunable Rabi dimer. In the absence of the phonon bath, the amplitude damping of the photon number oscillation is greatly suppressed by the driving field, and photons can be created thanks to resonances between the periodic driving field and the photon frequency. In the presence of the phonon bath, one still can change the photon numbers in two resonators, and indirectly alter the photon imbalance in the Rabi dimer by directly varying the driving signal in one qubit. It is shown that qubit states can be manipulated directly by the harmonic driving. The environment is found to strengthen the interqubit asymmetry induced by the external driving, opening up a new venue to engineer the qubit states

    Engineering Photon Delocalization in a Rabi Dimer with a Dissipative Bath

    Full text link
    A Rabi dimer is used to model a recently reported circuit quantum electrodynamics system composed of two coupled transmission-line resonators with each coupled to one qubit. In this study, a phonon bath is adopted to mimic the multimode micromechanical resonators and is coupled to the qubits in the Rabi dimer. The dynamical behavior of the composite system is studied by the Dirac-Frenkel time-dependent variational principle combined with the multiple Davydov D2_{2} ans\"{a}tze. Initially all the photons are pumped into the left resonator, and the two qubits are in the down state coupled with the phonon vacuum. In the strong qubit-photon coupling regime, the photon dynamics can be engineered by tuning the qubit-bath coupling strength α\alpha and photon delocalization is achieved by increasing α\alpha. In the absence of dissipation, photons are localized in the initial resonator. Nevertheless, with moderate qubit-bath coupling, photons are delocalized with quasiequilibration of the photon population in two resonators at long times. In this case, high frequency bath modes are activated by interacting with depolarized qubits. For strong dissipation, photon delocalization is achieved via frequent photon-hopping within two resonators and the qubits are suppressed in their initial down state.Comment: 11 pages, 11 figure

    A Monitoring System Design in Transmission Lines based on Wireless Sensor Networks

    Get PDF
    AbstractA smart grid application in monitoring the condition of transmission line with wireless sensor networks was described in this paper. ZigBee and GPRS (General Packet Radio Service) technology were adopted in this system to ensure normal transmission of signals, even in remote areas where there is no telecommunication service, and data could be transmitted over a long distance. In addition, the system provided warnings before the damage caused by meteorological disasters to ensure the line security

    Reexamination of the resonance contributions in B->X_s e^+ e^-

    Get PDF
    With help of the recent developments in the heavy quarkonium physics, we reexamine the long distance(LD) effects in \Bsee dominantly from the charmonium resonances J/ΨJ/\Psi and Ψ\Psi^{\prime} through the decay chains B\ra X_s J/\Psi (\Psi^{\prime}) \ra X_s e^+ e^-. We find that the resonance to nonresonance interference are reduced substantially.Comment: Revtex file,11 pages,1 figures,Phys.Lett.B in pres

    Design Space Exploration of Neural Network Activation Function Circuits

    Full text link
    The widespread application of artificial neural networks has prompted researchers to experiment with FPGA and customized ASIC designs to speed up their computation. These implementation efforts have generally focused on weight multiplication and signal summation operations, and less on activation functions used in these applications. Yet, efficient hardware implementations of nonlinear activation functions like Exponential Linear Units (ELU), Scaled Exponential Linear Units (SELU), and Hyperbolic Tangent (tanh), are central to designing effective neural network accelerators, since these functions require lots of resources. In this paper, we explore efficient hardware implementations of activation functions using purely combinational circuits, with a focus on two widely used nonlinear activation functions, i.e., SELU and tanh. Our experiments demonstrate that neural networks are generally insensitive to the precision of the activation function. The results also prove that the proposed combinational circuit-based approach is very efficient in terms of speed and area, with negligible accuracy loss on the MNIST, CIFAR-10 and IMAGENET benchmarks. Synopsys Design Compiler synthesis results show that circuit designs for tanh and SELU can save between 3.13-7.69 and 4.45-8:45 area compared to the LUT/memory-based implementations, and can operate at 5.14GHz and 4.52GHz using the 28nm SVT library, respectively. The implementation is available at: https://github.com/ThomasMrY/ActivationFunctionDemo.Comment: 5 pages, 5 figures, 16 conferenc

    Analysing Railway Safety with Systems Thinking

    Get PDF
    Railway system is a socio-technical system because the operation of such system also heavily relies on the management of human activities and operating procedures in the organisation, as well as the execution of technical subsystems. Safety of these systems therefore is more than just about engineering their technical subsystems. The latest approach from systems engineering considers that an accident is due to inadequate controlled interactions in the system and is usually a dynamic event chain started from the activation of a hazard and culminated in a complex process of sequential and concurrent events until the system is eventually out of control. Meanwhile the analysis of these systems’s safety becomes much harder when simply applying the traditional techniques of safety assessment. It is because, first of all, a social-technical system consists of a lot of complex and non-linear interactions, traditional techniques show their limits when analysing complex systems. And secondly, the safety of a social-technical system requires a system perspective, which should take all the behaviours (desired and undesired but predicted) of a system as a whole in the context of its environment. To capture the information needed, the models for these analyses (i.e., fault tree and FMEA table) will become too complex to have a systemic view of each individual causal factor. In this paper, we proposed an approach based on system thinking and system dynamics to analyse the safety of a social-technical system. The case study of a tram accident is simple enough for the purpose of demonstrating its feasibility and benefits. The comparison with fault tree analysis was conducted, but it was not for the evaluation of our approach. The real evaluation comes from the extensive applications in real world
    corecore