3,339 research outputs found

    Angular constraint on light-trapping absorption enhancement in solar cells

    Full text link
    Light trapping for solar cells can reduce production cost and improve energy conversion efficiency. Understanding some of the basic theoretical constraints on light trapping is therefore of fundamental importance. Here, we develop a general angular constraint on the absorption enhancement in light trapping. We show that there is an upper limit for the angular integration of absorption enhancement factors. This limit is determined by the number of accessible resonances supported by an absorber

    Inverse Design of Near Unity Efficiency Perfectly Vertical Grating Couplers

    Full text link
    Efficient coupling between integrated optical waveguides and optical fibers is essential to the success of integrated photonics. While many solutions exist, perfectly vertical grating couplers which scatter light out of a waveguide in the direction normal to the waveguide's top surface are an ideal candidate due to their potential to reduce packaging complexity. Designing such couplers with high efficiency, however, has proven difficult. In this paper, we use electromagnetic inverse design techniques to optimize a high efficiency two-layer perfectly vertical silicon grating coupler. Our base design achieves a chip-to-fiber coupling efficiency of over 99% (-0.04 dB) at 1550 nm. Using this base design, we apply subsequent constrained optimizations to achieve vertical couplers with over 96% efficiency which are fabricable using a 65 nm process.Comment: 9 pages, 9 figures. Updated to fix author name. This preprint has since been updated and accepted for publication in Optics Express: https://www.osapublishing.org/oe/abstract.cfm?uri=oe-26-4-476

    Leveraging Continuous Material Averaging for Inverse Electromagnetic Design

    Full text link
    Inverse electromagnetic design has emerged as a way of efficiently designing active and passive electromagnetic devices. This maturing strategy involves optimizing the shape or topology of a device in order to improve a figure of merit--a process which is typically performed using some form of steepest descent algorithm. Naturally, this requires that we compute the gradient of a figure of merit which describes device performance, potentially with respect to many design variables. In this paper, we introduce a new strategy based on smoothing abrupt material interfaces which enables us to efficiently compute these gradients with high accuracy irrespective of the resolution of the underlying simulation. This has advantages over previous approaches to shape and topology optimization in nanophotonics which are either prone to gradient errors or place important constraints on the shape of the device. As a demonstration of this new strategy, we optimize a non-adiabatic waveguide taper between a narrow and wide waveguide. This optimization leads to a non-intuitive design with a very low insertion loss of only 0.041 dB at 1550 nm.Comment: 20 pages, 9 figure

    Lithographic band gap tuning in photonic band gap crystals

    Get PDF
    We describe the lithographic control over the spectral response of three-dimensional photonic crystals. By precise microfabrication of the geometry using a reproducible and reliable procedure consisting of electron beam lithography followed by dry etching, we have shifted the conduction band of crystals within the near-infrared. Such microfabrication has enabled us to reproducibly define photonic crystals with lattice parameters ranging from 650 to 730 nm. In GaAs semiconductor wafers, these can serve as high-reflectivity (> 95%) mirrors. Here, we show the procedure used to generate these photonic crystals and describe the geometry dependence of their spectral response

    Intermediate Mirrors to Reach Theoretical Efficiency Limits of Multi-Bandgap Solar Cells

    Full text link
    Creating a single bandgap solar cell that approaches the Shockley-Queisser limit requires a highly reflective rear mirror. This mirror enhances the voltage of the solar cell by providing photons with multiple opportunities for escaping out the front surface. Efficient external luminescence is a pre-requisite for high voltage. Intermediate mirrors in a multijunction solar cell can enhance the voltage for each cell in the stack. These intermediate mirrors need to have the added function of transmitting the below bandgap photons to the next cell in the stack. In this work, we quantitatively establish the efficiency increase possible with the use of intermediate selective reflectors between cells in a tandem stack. The absolute efficiency increase can be up to ~6% in dual bandgap cells with optimal intermediate and rear mirrors. A practical implementation of an intermediate selective mirror is an air gap sandwiched by antireflection coatings. The air gap provides perfect reflection for angles outside the escape cone, and the antireflection coating transmits angles inside the escape cone. As the incoming sunlight is within the escape cone, it is transmitted on to the next cell, while most of the internally trapped luminescence is reflected

    The Scattering Theory of Oscillator Defects in an Optical Fiber

    Full text link
    We examine harmonic oscillator defects coupled to a photon field in the environs of an optical fiber. Using techniques borrowed or extended from the theory of two dimensional quantum fields with boundaries and defects, we are able to compute exactly a number of interesting quantities. We calculate the scattering S-matrices (i.e. the reflection and transmission amplitudes) of the photons off a single defect. We determine using techniques derived from thermodynamic Bethe ansatz (TBA) the thermodynamic potentials of the interacting photon-defect system. And we compute several correlators of physical interest. We find the photon occupancy at finite temperature, the spontaneous emission spectrum from the decay of an excited state, and the correlation functions of the defect degrees of freedom. In an extension of the single defect theory, we find the photonic band structure that arises from a periodic array of harmonic oscillators. In another extension, we examine a continuous array of defects and exactly derive its dispersion relation. With some differences, the spectrum is similar to that found for EM wave propagation in covalent crystals. We then add to this continuum theory isolated defects, so as to obtain a more realistic model of defects embedded in a frequency dependent dielectric medium. We do this both with a single isolated defect and with an array of isolated defects, and so compute how the S-matrices and the band structure change in a dynamic medium.Comment: 32 pages, TeX with harvmac macros, three postscript figure

    Light Trapping Textures Designed by Electromagnetic Optimization for Sub-Wavelength Thick Solar Cells

    Full text link
    Light trapping in solar cells allows for increased current and voltage, as well as reduced materials cost. It is known that in geometrical optics, a maximum 4n^2 absorption enhancement factor can be achieved by randomly texturing the surface of the solar cell, where n is the material refractive index. This ray-optics absorption enhancement limit only holds when the thickness of the solar cell is much greater than the optical wavelength. In sub-wavelength thin films, the fundamental questions remain unanswered: (1) what is the sub-wavelength absorption enhancement limit and (2) what surface texture realizes this optimal absorption enhancement? We turn to computational electromagnetic optimization in order to design nanoscale textures for light trapping in sub-wavelength thin films. For high-index thin films, in the weakly absorbing limit, our optimized surface textures yield an angle- and frequency-averaged enhancement factor ~39. They perform roughly 30% better than randomly textured structures, but they fall short of the ray optics enhancement limit of 4n^2 ~ 50

    Light deflection by photonic crystals

    Full text link
    When propagating through periodically structured media, i. e. photonic crystals, optical waves will be modulated with the periodicity. As a result, the dispersion of waves will no longer behave as in a free space, and so called frequency band structures appear. Under certain conditions, waves may be prohibited from propagation in certain or all directions, corresponding to partial and complete bandgaps respectively. Here we report a new fascinating phenomenon associated with the partial gaps, that is, deflection of optical waves. This phenomenon will render novel applications in manipulating light flows.Comment: 3 pages, 4 figure
    corecore