7 research outputs found

    Displacement characteristics of CO2 flooding in extra-high water-cut reservoirs

    No full text
    Carbon dioxide (CO2) flooding is a widely applied recovery method during the tertiary recovery of oil and gas. A high water saturation condition in reservoirs could induce a ‘water shielding’ phenomenon after the injection of CO2. This would prevent contact between the injected gas and the residual oil, restricting the development of the miscible zone. A micro-visual experiment of dead-end models, used to observe the effect of a film of water on the miscibility process, indicates that CO2 can penetrate the water film and come into contact with the residual oil, although the mixing is significantly delayed. However, the dissolution loss of CO2 at high water-cut conditions is not negligible. The oil-water partition coefficient, defined as the ratio of CO2 solubility in an oil-brine/two-phase system, keeps constant for specific reservoir conditions and changes little with an injection gas. The NMR device shows that when CO2 flooding follows water flooding, the residual oil decreases—not only in medium and large pores but also in small and micro pores. At levels of higher water saturation, CO2 displacement is characterized initially by a low oil production rate and high water-cut. After the CO2 breakthrough, the water-cut decreases sharply and the oil production rate increases gradually. The response time of CO2 flooding at high water-cut reservoirs is typically delayed and prolonged. These results were confirmed in a pilot test for CO2 flooding at the P1-1 well group of the Pucheng Oilfield. Observations from this pilot study also suggest that a larger injection gas pore volume available for CO2 injection is required to offset the dissolution loss in high water saturation conditions

    Logging identification for the Lower Cambrian Niutitang shale reservoir in the Upper Yangtze region, China: A case study of the Cengong block, Guizhou Province

    Get PDF
    Currently, China has achieved a breakthrough in the Lower Silurian Longmaxi shale in Sichuan Basin and its surrounding areas. Compared to the Longmaxi shale, the Lower Cambrian Niutitang shale, which has a greater deposition thickness and wider distribution area, is another significant stratum for China's shale gas. Geophysical well logging is one of the most significant methods used for identification and evaluation of shale gas reservoirs throughout the process of shale gas exploration and development. In this paper, the logging response of the Niutitang shale is summarized to “four high and four low”, this was determined through a comparative analysis of three shale gas wells in the Cen'gong block. The Geochemical logging (GEM) data shows that as the depth goes deeper the content of Si (quartz) increases and the content of Al, Fe, K (Potassium), and Clay minerals decreases. In addition, the Niutitang shale mainly has the feature of a single peak or two continuous peaks in T2 spectrum on the nuclear magnetic resonance (NMR) logging response. This has a longer T2 time and greater amplitude than normal shales. The logging response of various lithology and preservation is summarized by overlapping and a cross-plot analysis with the spectral gamma-ray, resistivity, density, acoustic, and compensated neutron logging data, which are sensitive to organic-rich shales. Moreover, the resistivity and acoustic logging data are sensitive to gas content, fluid properties, and preservation conditions, which can be used as indicators of shale gas content and preservation

    Pleiotrophin ameliorates age-induced adult hippocampal neurogenesis decline and cognitive dysfunction

    No full text
    Summary: Cognitive impairment has been associated with an age-related decline in adult hippocampal neurogenesis (AHN). The molecular basis of declining neurogenesis in the aging hippocampus remains to be elucidated. Here, we show that pleiotrophin (PTN) expression is decreased with aging in neural stem and progenitor cells (NSPCs). Mice lacking PTN exhibit impaired AHN accompanied by poor learning and memory. Mechanistically, we find that PTN engages with protein tyrosine phosphatase receptor type Z1 (PTPRZ1) to promote NSPC proliferation and differentiation by activating AKT signaling. PTN overexpression or pharmacological activation of AKT signaling in aging mice restores AHN and alleviates relevant memory deficits. Importantly, we also find that PTN overexpression improves impaired neurogenesis in senescence-accelerated mouse prone 8 (SAMP8) mice. We further confirm that PTN is required for enriched environment-induced increases in AHN. These results corroborate the significance of AHN in aging and reveal a possible therapeutic intervention by targeting PTN

    Experimentally validated design principles of heteroatom-doped-graphene-supported calcium single-atom materials for non-dissociative chemisorption solid-state hydrogen storage

    No full text
    Abstract Non-dissociative chemisorption solid-state storage of hydrogen molecules in host materials is promising to achieve both high hydrogen capacity and uptake rate, but there is the lack of non-dissociative hydrogen storage theories that can guide the rational design of the materials. Herein, we establish generalized design principle to design such materials via the first-principles calculations, theoretical analysis and focused experimental verifications of a series of heteroatom-doped-graphene-supported Ca single-atom carbon nanomaterials as efficient non-dissociative solid-state hydrogen storage materials. An intrinsic descriptor has been proposed to correlate the inherent properties of dopants with the hydrogen storage capability of the carbon-based host materials. The generalized design principle and the intrinsic descriptor have the predictive ability to screen out the best dual-doped-graphene-supported Ca single-atom hydrogen storage materials. The dual-doped materials have much higher hydrogen storage capability than the sole-doped ones, and exceed the current best carbon-based hydrogen storage materials
    corecore