38 research outputs found

    Reconstructing Images from Projections Using the Maximum-Entropy Method. Numerical Simulations of Low-Aspect Astrotomography

    Full text link
    The reconstruction of images from a small number of projections using the maximum-entropy method (MEM) with the Shannon entropy is considered. MEM provides higher-quality image reconstruction for sources with extended components than the Hogbom CLEAN method, which is also used in low-aspect astrotomography. The quality of image reconstruction for sources with mixed structure containing bright, compact features embedded in a comparatively weak, extended base can be further improved using a difference-mapping method, which requires a generalization of MEM for the reconstruction of sign-variable functions.We draw conclusions based on the results of numerical simulations for a number of model radio sources with various morphologies.Comment: 11 pages, 9 figure

    Phaseless VLBI mapping of compact extragalactic radio sources

    Full text link
    The problem of phaseless aperture synthesis is of current interest in phase-unstable VLBI with a small number of elements when either the use of closure phases is not possible (a two-element interferometer) or their quality and number are not enough for acceptable image reconstruction by standard adaptive calibration methods. Therefore, we discuss the problem of unique image reconstruction only from the spectrum magnitude of a source. We suggest an efficient method for phaseless VLBI mapping of compact extragalactic radio sources. This method is based on the reconstruction of the spectrum magnitude for a source on the entire UV plane from the measured visibility magnitude on a limited set of points and the reconstruction of the sought-for image of the source by Fienup's method from the spectrum magnitude reconstructed at the first stage. We present the results of our mapping of the extragalactic radio source 2200 +420 using astrometric and geodetic observations on a global VLBI array. Particular attention is given to studying the capabilities of a two-element interferometer in connection with the putting into operation of a Russian-made radio interferometer based on Quasar RT-32 radio telescopes.Comment: 21 pages, 6 figure

    Advances in small lasers

    Get PDF
    M.T.H was supported by an Australian Research council Future Fellowship research grant for this work. M.C.G. is grateful to the Scottish Funding Council (via SUPA) for financial support.Small lasers have dimensions or modes sizes close to or smaller than the wavelength of emitted light. In recent years there has been significant progress towards reducing the size and improving the characteristics of these devices. This work has been led primarily by the innovative use of new materials and cavity designs. This Review summarizes some of the latest developments, particularly in metallic and plasmonic lasers, improvements in small dielectric lasers, and the emerging area of small bio-compatible or bio-derived lasers. We examine the different approaches employed to reduce size and how they result in significant differences in the final device, particularly between metal- and dielectric-cavity lasers. We also present potential applications for the various forms of small lasers, and indicate where further developments are required.PostprintPeer reviewe

    Critical hydration in the solid-phase hydrolysis reaction of cinnamoyl-?-chymotrypsin

    No full text

    On the theory of antenna synthesis

    No full text

    Esterase activity of chymotrypsin in dimethyl sulfoxide

    No full text
    corecore