16 research outputs found

    Liesegang patterns : Studies on the width law

    Full text link
    The so-called "width law" for Liesegang patterns, which states that the positions x_n and widths w_n of bands verify the relation x_n \sim w_n^{\alpha} for some \alpha>0, is investigated both experimentally and theoretically. We provide experimental data exhibiting good evidence for values of \alpha close to 1. The value \alpha=1 is supported by theoretical arguments based on a generic model of reaction-diffusion.Comment: 7 pages, RevTeX, two columns, 5 figure

    Derivation of the Matalon-Packter law for Liesegang patterns

    Full text link
    Theoretical models of the Liesegang phenomena are studied and simple expressions for the spacing coefficients characterizing the patterns are derived. The emphasis is on displaying the explicit dependences on the concentrations of the inner- and the outer-electrolytes. Competing theories (ion-product supersaturation, nucleation and droplet growth, induced sol- coagulation) are treated with the aim of finding the distinguishing features of the theories. The predictions are compared with experiments and the results suggest that the induced sol-coagulation theory is the best candidate for describing the experimental observations embodied in the Matalon-Packter law.Comment: 9 pages, 7 figures, RevTe

    Pattern of Reaction Diffusion Front in Laminar Flows

    Get PDF
    Autocatalytic reaction between reacted and unreacted species may propagate as solitary waves, namely at a constant front velocity and with a stationary concentration profile, resulting from a balance between molecular diffusion and chemical reaction. The effect of advective flow on the autocatalytic reaction between iodate and arsenous acid in cylindrical tubes and Hele-Shaw cells is analyzed experimentally and numerically using lattice BGK simulations. We do observe the existence of solitary waves with concentration profiles exhibiting a cusp and we delineate the eikonal and mixing regimes recently predicted.Comment: 4 pages, 3 figures. This paper report on experiments and simulations in different geometries which test the theory of Boyd Edwards on flow advection of chemical reaction front which just appears in PRL (PRL Vol 89,104501, sept2002

    Reaction front propagation in a turbulent flow

    Get PDF
    The propagation of reaction fronts was studied by direct numerical simulations. The velocity field was obtained by integrating the Navier-Stokes equation. The structure of the reaction front and the enhancement of the front propagation speed were investigated. The ratio of eddy turnover times and of the characteristic chemical time scale was determined

    Simulation of fluid-solid coexistence in finite volumes: A method to study the properties of wall-attached crystalline nuclei

    Full text link
    The Asakura-Oosawa model for colloid-polymer mixtures is studied by Monte Carlo simulations at densities inside the two-phase coexistence region of fluid and solid. Choosing a geometry where the system is confined between two flat walls, and a wall-colloid potential that leads to incomplete wetting of the crystal at the wall, conditions can be created where a single nanoscopic wall-attached crystalline cluster coexists with fluid in the remainder of the simulation box. Following related ideas that have been useful to study heterogeneous nucleation of liquid droplets at the vapor-liquid coexistence, we estimate the contact angles from observations of the crystalline clusters in thermal equilibrium. We find fair agreement with a prediction based on Young's equation, using estimates of interface and wall tension from the study of flat surfaces. It is shown that the pressure versus density curve of the finite system exhibits a loop, but the pressure maximum signifies the "droplet evaporation-condensation" transition and thus has nothing in common with a van der Waals-like loop. Preparing systems where the packing fraction is deep inside the two-phase coexistence region, the system spontaneously forms a "slab state", with two wall-attached crystalline domains separated by (flat) interfaces from liquid in full equilibrium with the crystal in between; analysis of such states allows a precise estimation of the bulk equilibrium properties at phase coexistence

    Liesegang patterns: Effect of dissociation of the invading electrolyte

    Full text link
    The effect of dissociation of the invading electrolyte on the formation of Liesegang bands is investigated. We find, using organic compounds with known dissociation constants, that the spacing coefficient, 1+p, that characterizes the position of the n-th band as x_n ~ (1+p)^n, decreases with increasing dissociation constant, K_d. Theoretical arguments are developed to explain these experimental findings and to calculate explicitly the K_d dependence of 1+p.Comment: RevTex, 8 pages, 3 eps figure

    Strong-coupling limit in cold-molecule formation via photoassociation or Feshbach resonance through Nikitin exponential resonance crossing

    Full text link
    The strong-coupling limit of molecule formation in an atomic Bose-Einstein condensate via two-mode one-color photoassociation or sweep across a Feshbach resonance is examined using a basic nonlinear time-dependent two-state model. For the general class of term-crossing models with constant coupling, a common strategy for attacking the problem is developed based on the reduction of the initial system of semiclassical equations for atom-molecule amplitudes to a third order nonlinear differential equation for the molecular state probability. This equation provides deriving exact solution for a class of periodic level-crossing models. These models reveal much in common with the Rabi problem. Discussing the strong-coupling limit for the general case of variable detuning, the equation is further truncated to a limit first-order nonlinear equation. Using this equation, the strong nonlinearity regime for the first Nikitin exponential-crossing model is analyzed and accurate asymptotic expressions for the nonlinear transition probability to the molecular state are derived. It is shown that, because of a finite final detuning involved, this model displays essential deviations from the Landau-Zener behavior. In particular, it is shown that in the limit of strong coupling the final conversion probability tends to 1/6. Thus, in this case the strong interaction limit is not optimal for molecule formation. We have found that if optimal field intensity is applied the molecular probability is increased up to 1/4 (i.e., the half of the initial atomic population)

    Density and Graviton Perturbations in the Cosmic Microwave Background

    Get PDF
    This paper evaluates and compares the gravitational wave and density perturbation contributions to the cosmic microwave background radiation, on the basis of the same power law inflationary model. The inflation to radiation transition is treated as instantaneous, but a model is constructed to allow for a smooth transition from the radiation to the matter dominated eras. The equations are numerically investigated and integrated, without any basic approximations being made. Use is made of the synchronous gauge, with appropriate gauge invariant variables, thus eliminating any confusion arising from unphysical gauge modes. We find a non- negligible gravitational wave contribution, which becomes dominant for a power law expansion with exponent q<13q < 13. We also explore the dependence of our results with the main characteristic of the transition region, its length.Comment: 19 page
    corecore