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Reaction front propagation in a turbulent flow
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The propagation of reaction fronts in a turbulent fluid flow is studied by direct numerical simulations in two
space dimensions. The velocity field is obtained from integrating the Navier-Stokes equation in two dimen-
sions. We investigate the structure of the reaction front and the enhancement of the front propagation speed due
to turbulent mixing. Consistently with earlier theoretical, predictions and experiments we find two qualitatively
different regimes as the Damkohler number—the ratio of eddy turnover times and of the characteristic chemi-
cal time scale—is varied, corresponding to a distributed reaction zone and thin wrinkled fronts.
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I. INTRODUCTION f(A=0)=f(6=1) =0, (2

The mixing of passively advected scalar fields in turbulentwhere #=0 and =1 represent two different phases of the
fluid flows has wide ranging applications of fundamental andsystem.
practical importance and significant theoretical progress has A classic model of front propagation and perhaps the sim-
been made throughout the last decgtied]. In many appli- plest one is the so-called Fisher-Kolmogorov-Petrovsky-
cations species passively advected by a fluid flow participat®iskunov(FKPP) equation, initially introduced as a model
at the same time in chemical reactions or biological pro<for the propagation of an advantageous gene in a population
cesses. While the effect of mixing on chemical or biological[10,11. The FKPP model effectively describes the invasion
activity in simple—laminar or chaotic—flows has received of an unstable phas@=0) by a stable oné6=1) using a
considerable attention recen{l], comparatively little work  quadratic reaction terrf()=6(1-6). For the first-order au-
has been done on reactive passively advected species in mgdcatalytic reaction, the scalar fieltican be interpreted as
tiscale turbulent flows. the local relative concentration of reactant®s/(Ca+Cpg).

One of the simplest classes of chemical reaction dynamic$here exist similar front solutions for models of higher order
taking place in a fluid environment is the first-order autocatagytocatalytic reactions likeA+nB— (n+1)B with corre-
lytic process of the typé\+B— 2B, where reactanB con-  sponding reaction terni(6)=6"(1-6). In the case of com-
sumes componenh. It is well known that in extended ystion ¢ is a normalized temperature field and the two
reaction-diffusion systems this kind of process leads 10 thgnases represent the fresh mixture of fuel and oxidizer at low
formation of propagating reaction fronts]. Analogous  temperature and the completely burnt state at high tempera-
fronts also exist in models of combustigfiames [6,7] o yre, respectively. The reaction rate depends on the tempera-
biological populations[8] (e.g., oceanic plankton ecosys- e according to the Arrhenius law, resulting in an exponen-
tems. tial form of the source term.

Front solutions are typical to models where the reaction  gqyation(1) has planar traveling front solutions propagat-
dynamics has multiple steady or quasisteady stpsThe g 4t constant speag =|v;| with no change of shape so that

dynamics of the front can be described by nonlinear dif“fu-é,(r ,0)=6,(r —vt). Dimensional analysis shows that the mini-

sion equations of the form mum or critical speed i$,=Cy(aD)2. The value of the
90 constaniC, depends on the form of reaction term and can be
— =DV?0+a f(0), (1) obtained analytically for quadratic and cubic autocatalysis as
It CI™Y=2 andC{™?=1/y2. Note that planar fronts may also

where 6(r ,t) is a scalar concentration field, also termed.eXISt for speeds larger tham, [12,13. In the case of an

rogress variable, taking on values®(r ) < 1, andf(6) is initial value problem it may be shown that planar fronts
progres ' 90 ' ' propagate at the critical speeg provided the initial condi-
a reaction term that satisfies

tion on @ is localized or decays in space sufficiently fast. At
critical front speed conditions the front propagation mecha-
nism is initiated by diffusive transport at the leading edge of
*Present address: Division of Engineering and Applied Scienceghe front. However, for supercritical front speed conditions
Harvard University, Cambridge, MA 02138, USA. Electronic ad- the mechanism is not diffusion initiated, but differs in that a
dress: ckoudell@deas.harvard.edu local transition from#=0 to 6=1 occurs at different points
"Electronic address: zoltan@cnls.lanl.gov ahead of the front with a time delay, the reaction front speed
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determining delay itself being controlled by the precise Inthe present work we study the effects of incompressible
shape of the initial condition. Consequently any meaningfulsteady-state Navier-Stokes turbulent velocity fields on the
numerical experiments ought to take into account the “senpropagation dynamics of fronts governed by B).by direct
sitivity to initial conditions:” of the front propagation speed, numerical simulations. The numerical tool we developed al-
without which uncontrolled transients may bias the experidows us to systematically study the speed-up of reaction
mental results and furthermore it is preferable to select initiafronts by turbulent fluid mixing in transient and stationary
conditions guaranteeing the critical speed as the steady stateaction regimes for a specific range of reaction rates. With
front speed. respect to the turbulent velocity field time scales we simu-
In the presence of a fluid flow the evolution of a passivelylate, we focus in particular on the transition from slow reac-
advected, reactive scalar field is governed by an advectiortion rates with broad fronts to moderately fast reaction rates
reaction-diffusion equation written in nondimensional vari- with sharp fronts, but we do not approach the G-equation
ables as limit in the sense that no reaction considered is much faster
than the fastest turbulent time scale in the flow. In Sec. Il we
a0 o describe the numerical model and the experimental setup we
9t +V-V6=PelV?o+Daf(o), ) used. Section Il presents our results and a discussion of our
findings. We conclude the report in Sec. IV.
wherev is a prescribed velocity field dependent on space and
time only. Further, for characteristic length and velocity
scales,L andU, Pe=U/LD and Das.«a/U are the dimen-
sionless Péclet and Damkohler numbers, respectively. The
Péclet number represents the ratio of advective and diffusive A. Turbulence model
transport, while the Damkohler number is the ratio of the While it is often stressed that real fluid flows from turbu-

characteristic time spales of.adv.ect|on and reaction. AIS(?ent scales down to molecular diffusive scales are intrinsi-
note that the dimensionless time is scaled by the charactel=

istic advective time scald=L/U. For concreteness we ma cally three dimensional, we presently wish to explore generic
. : B ) . Y effects of multiscale turbulent flow fields on front propaga-
assume that is the integral scale of the flow and is the : L L
: . . tion. Therefore, we simplify the problem by working in the
root-mean-square velocity obtained from a spatial average.

. . plane and we consider the front dynamics in a two-
. Th? autocatalytic process described by Eﬂ.‘ has been . dimensional incompressible turbulent velocity field. Two-
investigated for the case of unsteady laminar flows in

bounded domaingL4] and open flows with a bounded mix- dimensional turbulent flows are also relevant in geophysical

. . R .~ context. We consider a fluid flowing in thg,y) plane gov-
ing region[15]. Front propagation in simple steady laminar . . ; 2
flows was studied recently in Refil6—18. For the case of erneq by the two_—d|men3|onal Navier-Stokes equation in the
steady cellular flows it was shown that for small diffusivity vorticity formulation
(Pe>1) in the slow reaction regimeDa< 1) the front speed a¢ -1
scales aw¢/vo~Pe* independent of Da, while for fast FTRAA V{=Tgagt REV{+ 7, (4)
reactions (Da>1), the front speed scales as;/vg
~PeYDa V2 [16]. In another recent work19] rigorous Wwhere ¢ is the scalar vorticity, {=(VXv)-k, V
bounds for FKPP front propagation speeds in simple flow=(id/dx,jd/dy) andk is a unit vector defining the direc-
geometries have been derived. More closely related to thgon perpendicular to the flow plane. Furthey,,q is a drag
present study are the investigations of front propagation in aoment acting as a vorticity sink, R&H L vy, is the Rey-
two-dimensional stochastic field generated by integration oholds number based on the hyperdiffusion coefficigppe,
a stochastic differential equatig@0,21 and meant to repre- and appears as a coefficient multiplying tite-order hyper-
sent a synthetic turbulent velocity field. This work uses adissipation operatov" and 7 is a force curl acting as a vor-
source representing a cubic autocatalytic reackiéfil—6) ticity source. The significance of these right-hand-side terms
and focuses primarily on qualitative properties of reactionis explained in what follows. The vorticity field is related to
fronts generated by synthetic velocity fields. Two types ofthe velocity field via the scalar streamfunctigix,y,t) fol-
generic geometries for the reaction zones are described thetewing the relations;=-V?y, u=dy/ dy andv =—dil ix.
namely the distributed reaction zone and the sharp wrinkled Equation(4) was integrated on a doubly periodic domain
front for increasing flow intensities while the reaction rate isof size 27X 27 with a spatial resolution of 1024ridpoints
kept constant. The existence of these two regimes was firsising a classic Fourier-Galerkin spectral method, but with a
predicted by Damkohlei22] and was later observed in labo- recently proposed formulation for the vorticity sin., We
ratory experiment$23]. assume that the most crucial statistical properties of three-
The so called G-equation limit of E¢R) corresponding to  dimensional multiscale turbulent flows are best mimicked
a geometrical optics approximation obtained in the limitwithin a two-dimensional approximation when we consider a
Da—, Pe—x, and Da/Pe=const describes the propagavelocity field with spectral properties corresponding to the so
tion of thin reaction frontg7,24. The advantage of the G called inverse(upscal¢ energy cascade range of two-
equation is that it is amenable to analytiqalsymptoti¢ ~ dimensional turbulencg27,28. The energy spectrum in this
treatment for steady or unsteady cellular flows as shown imegime is known to be described by the same power law as
Ref. [25] and to scaling analysis for turbulent flq&6]. the inertial range spectrum of three-dimensional Kolmog-

IIl. NUMERICAL METHODS AND EXPERIMENTAL
SETUP
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10 T T B. Passively advected reactive species model
and experimental setup

While the Fourier-Galerkin spectral method used for the
] turbulent flow simulation has desirable convergence proper-
ties, it is unfortunately not suitable for the integration of the

reactive species. Indeed, in virtue of an unstgblemargin-

ally stablg fixed point =0 in the reaction dynamics, it is

E desirable to adhere to a positive definite numerical method.
We found that the use of a sixth order compact finite differ-

o ence method fqr the spatlal_ derlvatl_\/[&)] leads to satlsfy_-
» ) =D ~ ing results. While the resulting spatial scheme is not strictly
107" [ == C & KT, G =6.5,e=6x 10 S ... . .. .
— DNS positive definite, compact finite difference schemes neverthe-

less have a good track record for the solution of species
equations in various direct-numerical-simulation/large-eddy-
_ia| simulation studies of turbulent combustion problef34].
We couple the reactive part to the advection-diffusion part of
Eq. (3) via a straightforward Strang splitting scheme and
perform the time integration with a second or fourth order
107 : : Runge-Kutta scheme.

10 Generating time series of stationary progressive reaction
fronts requires the development of a stable numerical model

FIG. 1. Instantaneous kinetic energy spectrum of the turbulentn order to be able to integrate the syste and (3) over
velocity field. arbitrary long times. This is due to the existence of a tran-
sient regime when starting a front propagation experiment
from a given initial condition on one hand, and the presence
of rather important fluctuations of the turbulent front propa-
orov 1941 turbulence an(_j scales_lfaé’?’. _A method for gen- gation speeﬁ;T around its mean value on the other helfndl,aas
erating just such a flow is described in RE29), SGC for g e detailed in Sec. Ill. Given the relatively small size of
short, and we follow this approach closely in the presenihe computational domain as defined in the laboratory frame,
work. SGC showed that it is possible to generate an inversge finite front propagation speed and the long integration
energy cascade in a bounded two-dimensional flow displaytimes required to overcome the earlier-mentioned con-
ing the same scaling behavior as that conjectured by Kraichstraints, we developed a framework operating in a moving
nan for an unbounded flow by introducing one forcing reference frame, to be described in what follows. Let us con-
mechanism and two dissipation channels. The force euml,  sider the solution of Eq(3) in a domain periodic in the
Eq. (4), is acting at small scales in a narrow wave numberdirection and unbounded in the direction. The boundary
band and is5 correlated in time. The first dissipation channel conditions on the scalar are taken to 8&— —,y,t)=1,
Tdrag IS @ large-scale closure scheme based on the EDQNM(x—,y,t)=0, corresponding to the presence of a sink at
approximation and acts as a large-scale energy sink compat-——-« and of a source ak—cc. The turbulent flow is
ible with the required>'® scaling up to the largest resolved mapped onto this domain by periodic repetition of the veloc-
scales. In this respect the approach of SGC differs from ality field along thex axis, so thatv(x+2,y)=v(x,y). We
other upscale energy cascade numerical studies of twaonsider three different types of reaction terms correspond-
dimensional turbulence known to us, which consistently uséng to quadratic and cubic autocatalysis and an exponential
ad hoclarge scale friction schemes. The second dissipatiofiorm that is analogous to flame fronts in premixed combus-
channel is a strong high-order harmonic hyperdissipatioriion
function strongly suppressing vorticity fluctuations associ-
ated with the directdownscalg flux of vorticity. Full details f(6) =[6(1-6),6°(1 - 6),(1 - O)exp- 1/6)].  (5)
of the numerlc:_:ll model may be _foun(_j in RE29). Note tha_t We now define the instantenous front speed based on the
we use numgnqal para.met.ers identical tq those used in th‘fulk reaction rate as in Refl9]:
original publication validating the numerical scheme. Re-
markably, due to the interplay between the two dissipation ——

. T N . 1 Y96

channels the resulting flow field is maintained void of coher- vr= —f f —dxdy. (6)
ent structures for arbitrary times and a forced-dissipative LyJ Jo 0t
equilibrium simulation is obtained. We illustrate the resulting
stationary energy spectrum in Fig. 1 where it is seen that w8y substituting Eq(3) into Eq. (6) and observing that the
obtain the Kraichnan 1967 scaling between wave numberitegrals of the advective and diffusive transport terms van-
k=8 andk=215 asE(k)=Cy,e?*k 53 with Cx,~6.5. Itisin  ish along both directionGssuming zero mean flow in the
this stationary flow that we consider the advection-reactiondirection and periodic boundary conditions in thdirection)
diffusion problem whose numerical model is discussed nextwe obtain
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Da (" (Y of a forced passively advected and chemically inert species.
vr= L_J f f(0)dxdy, (7)  There the Pe number was increased so as to obtain a quali-
yJoe 70 tatively sound Obukhok > scaling range and a diffusion

which identifies a relationship between the scalar fielshd ~ range for the species variance spectrum. The resulting nu-
the instantenous front propagation speed. Since the earligperical value selected was Pe=% 0% It was then found
integral has contributions coming from the frontal region experimentally that in the case of the reactive species the Pe
only, the front speed can be approximated by restricting th&ad to be lowered somewhat to a value of Pe=1:246"
outer integral to a finite interval, centered around the front, 'ndeed the source term is a variance production term and an
providedL, is sufficiently large, so that outside this interval increased species diffusivity is necessary to avoid spectral
9is very close to the unreacte:0 or completely consumed blocking at the smallest scales. We estimated the Damkdhler
0=1 states. In the regions far behind and far ahead of thBumbers Da to be considered with respect to turbulent time
propagating front where the scalar field is almost uniform inScales estimated from the kinetic energy spectrum. To first
space(#=1 and#=0, respectively mixing has no effect and @PProximation we can associate a characteristic time scale
there can be no contribution from these regions to the dy7(K) to each length scale~1/kin the flow using the kinetic
namics of the reactive species. The region where the reactid¥'€ry spectrum. From dimensional analysis we find that
is active, however, is changing in time advancing alongxthe that (k) ~2C,;"%e/% 2. For the inverse cascade simulated
axis. In order to maintain the front in the center of the com-presently withk in Ref. [8] (p. 215 we get time scales in the
putational domain, we therefore consider the Galilean trans-ange 7min =~ 0.033 7,5~ 0.30. The Damkohler number has
formed rectangular domaitx’,y) of size Ly=n2m,L,=2m, been varied in the range 0.029a<12.8, that represents

moving with the instantaneous front speegl,so that reaction timescalesy, ~Da* slower or comparable to the
turbulent time scales. For small Da the reaction is very slow,
, ! therefore a very long time is needed to reach the stationary
X :X_fo or(7)d7. ®) regime of the front propagation, but their treatment is un-

problematic. However, the range of attainable Da is bounded
The boundary conditions are periodic iy and the earlier by the fact that fronts becomes very sharp at high
x’-boundary conditions ared(x'=0,y)=1,6(x'=L,,y)=0.  values. Computing extreme cases and thereby resolving the
The length of the domair,,, is chosen to be much larger sharp fronts requires either higher spatial resolutions of the
than the width of the front so that the presence of the boundrumerical model or the use of altogether alternative numeri-
aries have negligible effect on the propagation speed. li§al schemes allowing the representation of quasidiscontinu-
practice doubling the basic72< 27 square(n=2) is suffi- ities. Also note that in the case of the quadratic reaction term
cient for most front widths considered in the present studyf(1-6), due to the instability of the unreacted phase-

The speed of the moving reference frame, is set by the cortable fixed point at9=0), the highest Da that could be
straint that the first moment of the progress variable withinachieved with the present numerical method based on sixth
the computational domain keeps a constant value order compact finite difference schemes was 1.6.

1
Ly

Ly 2
(O)(t) = f J o(x',y, dx dy = % (9) Ill. RESULTS AND DISCUSSION
0 0

The turbulent flow distorts the initial planar front and pro-

This condition ensures that the front stays in the center of theluces a complex front structure. It thus increases the area
computational domain and it allows us to make integrationsver which the reaction is active, enhancing the bulk reaction
over arbitrarily long times as required in order to obtain goodrate and the front propagation speed.
samples of arbitrary quality of the fluctuating front speed. After a transient acceleration time the turbulent front

Preliminary numerical experiments with various initial speed saturates and reaches a statistically stationary state.
conditions have shown that the initial adjustment phase toThe instantenous front speed, based on the bulk reaction rate
ward a stationary propagating front is strongly dependent omwas obtained from the scalar fielir ,t) according to Eg.
initial conditions. The dependence is related to the width of7). The temporal evolution of the front speed in the turbu-
the initial condition compared to the width of the stationarylent flow is shown in Fig. 2 for some representative values of
front. In order to avoid these artificial transient effects wethe Damkoéhler number Da for quadratic autocatalysis.
selected the stationary front solutions of the reaction- All qualitative features of the front dynamics and the
diffusion Eq.(1) as initial conditions in Eq(3). The initial  structure of the fronts in the stationary state were found to be
conditions were obtained from numerical integration of thevery similar for the three types of reaction dynamics consid-
corresponding one-dimensional reaction-diffusion equatiorered. There are, however, differences in the numerical values
in a stationary mediuntiv=0) using a step function as initial of the propagation speed.
condition. The average front speed in the stationary regime increases

For a given statistically steady turbulent velocity field andwith Da and the time needed to reach the statistically station-
a given value of Pe we focus on the Da dependence of thary state is longer for small Da. Even in the stationary state
fronts. The maximum admissible value for @e., the small-  the instantaneous front speed fluctuates in time. These fluc-
est species diffusivity avoiding spectral blocking on the dis-tuations are stronger when the reaction is {aste Fig. 2.
crete meshwas determined by considering a series of runswe believe that the fluctuations of the propagation speed are
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FIG. 2. Instantenous front speed as a function of time obtained
from the bulk reaction ratgf(6)=6(1-6)].

related to the finite width of the channel. The size of the
largest coherent structures within the front is set by the inte-
gral scale,L=m/4, of the turbulent flow(the characteristic
size of the largest eddigdn our simulations the width of the
channel is only eight times larger than the integral scale. In g
much wider channel., > L, the fluctuations would presum-
ably average out and lead to an almost constant propagatio
speed. However, numerical simulations in a much wider
channel and the generation of turbulent flow over scales
much larger than the integral scale would be computationally
very expensive and require additional memory afforded only
by the use of distributed computing. Therefore, we use an
alternative approach by performing simulations over a long
time period, so that a well defined average front speed can b
determined. It is assumed, that this time-averaged front
speed is not sensitive to the width of the channel and is thd
same as the constant asymptotic front speed corresponding
the limit L, — oo

Snapshots of typical front structures in the stationary re- FIG. 3. Snapshots of the front structugéx,y) for f(6)=6(1
gime are presented in Fig. 3 for three different reaction rates: 6), after a statistically stationary state has been reached. The val-
When Da is small the reaction zone is broad, extending ovewes of the Damkohler numbers are 0.05, 0.2 and(fin top to
distances larger than the integral scale alongxtd@ection.  bottom).

This explains the long transient time necessary to buildup the
broad front structure. In case of larger Damk&hler numbers

the front structure becomes sharper and the reaction zone is
confined to a narrow region. The average front profiles, ob- 1
tained by averaging the concentration field along ythexis
(Fig. 4 shows the broadening of the front along thdirec-
tion as Da is decreased.

Apart from a change in the width of the reaction zone, the
fluctuations in the transverse direction also depend on the 06
Damkéhler number. This can be characterized by the probe
ability density function of the scalap, [ 6(x=Xo,y)] along 04 F
transectsx=x, corresponding to different average values of
the progress variabléf(x=xq,y))= 6, (Fig. 5. For slow re-
actions the pdfs are distributed in a small interval around the
meand,. When the Damkohler number is large the distribu-
tions are mainly concentrated to the extreme valde$) and 0
0=1, and the probability of intermediate concentration val-
ues is rather small.

The main quantity of interest is the time-averaged front FIG. 4. Front profiles obtained by calculating the average con-
speed and its dependence on the reaction rate. The fronéntration along the direction transverse to the propagaiaxis).

08 |

02
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20 ! ! ! ! ! ! (e)=d.1 _ FIG. 6. Time averaged propagation speeds normalized by the
b.) ()=0.3 ------- root-mean-squaréms) turbulent velocity as of function of Da for
Eggig? — three different types of reaction dynamicds:,X'=6(1-6), r#r
15 ©)=0.9 ——-- 1 -P(1-6), 1EDr—(1-0exp-1/6) and Pe=1244 except for the
datapoints indicated by that correspond to Pe=156. The vertical
= bars show the standard deviation of the fluctuations in time of the
‘uof e front speed for the quadratic autocatalytic reaction.
o .,".

diffusion front in a stationary medium, stated in the Intro-
duction, by replacing the molecular diffusion coefficient with
an effective turbulent diffusivity22].

To test this prediction we measured the turbulent diffusiv-
ity numerically by observing the dispersion of a passive sca-

TR R

g iy

o bl L
0 01 02 03 04 05 06 07 08 09 1 lar (Da=0) along the channel due to the same turbulent flow.

0 The initial distribution was chosen to be Gaussian along the
channel and uniform in the transverse direction. Assuming

along transects taken in the direction perpendicular to the propagetlhat for long times and on length scales larger than the inte-

FIG. 5. Probability density functions of the concentratién

gral scale the dispersion is well modeled by a diffusive pro-

cess the concentration averaged alongtlaxis (b) should
satisfy a diffusion equation

tion: (a) slow reaction Da=0.05 an() fast reaction Da=0.4.

speed normalized by the rms velocity in the turbulent flow is
presented in Fig. 6 for the three different types of source -

terms stated in Eq(5) earlier. The vertical bars show the 90 _ Y (12)
standard deviation of the fluctuating front speed in the sta- Jt

tionary state. For small Da the bars are not visible since th?vith the solution

front speed is essentially constant in time after the transient

acceleration period. . 1 N
For small Da the front speed follows an approximately o(x,t) = o (12

Da'’? dependence. The stirring by the turbulent flow acceler-
ates the propagation speed of the reaction-diffusion front byhere Dy is the turbulent diffusivity. By monitoring the in-
a constant factor, that is independent of Da: crease of the width in time of the Gaussian profiles we ob-
i tainedD+=7.734x 1072, Using this diffusivity in the laminar
S=vrlvg=9.5, Da< Ty 10 front speed formula we indeed obtain the measured values of
Note also, that the acceleration facis independent of the  the front speed for small Da with good approximation. Com-
details of the reaction dynamics defined by the source terrR@ring Dr with the moI(_alcuIar d'ﬁ“S'V'}y' in the same non-
f(6). This shows that the acceleration factor in the slow re-dimensional unitsh=Pe~=8.037x 10™* we obtain a good
action case is an inherent property of the transport processegstimate of the acceleration factor
In this regime the chemical reaction is slower than the slow-
est eddies. The transport due to stirring, on time scales larger
than the eddy turnover times of the larg€anhd slowest Still in the small Da regime, the propagation speed turns
eddies, can be described as a turbulent diffusion proceseut to be relatively insensitive to moderate changes in the
This suggests, that the front propagation speed can be oeclét number. We decreased Pe up to a factor eight and did
tained from the formula for the speed of the reaction-not observe any significant change in the front spéegl 6).

S=D;/D~9.8. (13)
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This can be explained by the fact, that the effective turbulent 10 F ' i = g ! ' ]
diffusion is not affected by the molecular diffusion—it can A * * % f o
be thought of as a noise term added to the fluid particle B + 7. b

trajectories—as long as the molecular diffusion is much
weaker than the diffusion due to the turbulent flow, i.e, Pe
>1.

For larger reaction rates, the reaction time scale'ba-
comes comparable to the eddy turnover times related to th®
length scales defining the inverse energy cascade. The fror
propagation speed still increases with Da, but the increase i
significantly slower than D#. The enhancement of the front
speed due to turbulence is indeed less efficient for fast reac
tions, S=v/vy< VD+/D. We propose the following explana-
tion for this behavior. The reaction rate Da defines a charac- . . . . ' . .
teristic length scalq)(Da)<I__W|th|n the_mertlal range of the 0 5 10 15 20 25 30 35 40 45
turbulent flow corresponding to eddies having a turnover Q
time scale similar to the reaction time,~Dal. Eddies
smaller tharl, are faster than the chemical reaction and pro- FIG. 7. Enhancement fact&@=v/U for all three types of reac-
duce an effective turbulent diffusion. Eddies larger thapn  tions (using the same symbols as in Fig) & the ratio of the
the other hand are too slow to be able to disperse the fluiddvection velocity and speed of the laminar propagation sfged
parcels in the time needed for the reaction to complete andU/v. The dashed line represeris 1+08Q.
therefore, they lead to the wrinkling of the front structure as
shown by the strong fluctuations of the scalar field in the
transverse directiofFig. 5). These eddies do not participate iS broad with weak fluctuations in the transverse direction
efficiently in the diffusive transport process, therefore theand the enhancement rate is independent of the Damkéhler
enhancement rat8=v{/v, becomes smaller then the con- number Da. In the fast reaction regime, there is a relatively
stant factor obtained for slow reactions and decreases witBharp wrinkled interface between the regions of fresh and
Da. fully consumed reactant. The turbulent mixing is less effi-

The front speed enhancement due to mixiBgis shown  cient in increasing the propagation speed as the reaction be-
in Fig. 7 as a function of the ratio between the rms turbu-comes faster. The transition between the two regimes takes
lence velocity and the speed of the reaction-diffusion frontolace when the turbulent propagation speed becomes compa-
Q=U/uv,. There have been various theoretical predictions foffable to the characteristic velocity of the flow.
the S(Q) relationship[32,33. Our numerical results suggest ~ The slow reaction regime observed in our simulations is
a linear relationshiis=1+KQ (K= 0.8) in the regime of fast analogous to the one identified in R¢16] for the case of
reactiongcorresponding to sma®). In the largeQ regimes  Cellular laminar flows. For fast reactions it was found there
is roughly constant as expected for the distributed reactiof1at the propagation speed becomes independent of the
zone case discussed earlier. We also note, that in both r&a@mkohler number. From our results it seems, that contrary

gimes the data obtained from different types of reactiond® the case of cellular flows, in the turbulent flow the propa-
seem to collapse on the same curve. gation speed continues to grow with Da, but more slowly

than D&2 This difference appears to be a signature of the
multiscale character of the flow. Establishing the exact form
of the dependence of the propagation speed on Da in the fast

Using direct numerical simulations of two-dimensional reaction regime, requires numerical simulations with much
turbulent flow we have found two characteristic regimes forhigher resolution, able to resolve the very sharp front struc-
front propagation. When the reaction is slower than all charture, and progress in theoretical understanding of the phe-
acteristic time scales of the turbulent velocity field, the frontnomenon.
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