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The propagation of reaction fronts in a turbulent fluid flow is studied by direct numerical simulations in two
space dimensions. The velocity field is obtained from integrating the Navier-Stokes equation in two dimen-
sions. We investigate the structure of the reaction front and the enhancement of the front propagation speed due
to turbulent mixing. Consistently with earlier theoretical, predictions and experiments we find two qualitatively
different regimes as the Damköhler number—the ratio of eddy turnover times and of the characteristic chemi-
cal time scale—is varied, corresponding to a distributed reaction zone and thin wrinkled fronts.
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I. INTRODUCTION

The mixing of passively advected scalar fields in turbulent
fluid flows has wide ranging applications of fundamental and
practical importance and significant theoretical progress has
been made throughout the last decade[1–3]. In many appli-
cations species passively advected by a fluid flow participate
at the same time in chemical reactions or biological pro-
cesses. While the effect of mixing on chemical or biological
activity in simple—laminar or chaotic—flows has received
considerable attention recently[4], comparatively little work
has been done on reactive passively advected species in mul-
tiscale turbulent flows.

One of the simplest classes of chemical reaction dynamics
taking place in a fluid environment is the first-order autocata-
lytic process of the typeA+B→2B, where reactantB con-
sumes componentA. It is well known that in extended
reaction-diffusion systems this kind of process leads to the
formation of propagating reaction fronts[5]. Analogous
fronts also exist in models of combustion(flames) [6,7] or
biological populations[8] (e.g., oceanic plankton ecosys-
tems).

Front solutions are typical to models where the reaction
dynamics has multiple steady or quasisteady states[9]. The
dynamics of the front can be described by nonlinear diffu-
sion equations of the form

] u

] t
= D¹2u + a fsud, s1d

where usr ,td is a scalar concentration field, also termed
progress variable, taking on values 0,usr ,td,1, andfsud is
a reaction term that satisfies

fsu = 0d = fsu = 1d = 0, s2d

where u=0 andu=1 represent two different phases of the
system.

A classic model of front propagation and perhaps the sim-
plest one is the so-called Fisher-Kolmogorov-Petrovsky-
Piskunov(FKPP) equation, initially introduced as a model
for the propagation of an advantageous gene in a population
[10,11]. The FKPP model effectively describes the invasion
of an unstable phasesu=0d by a stable onesu=1d using a
quadratic reaction termfsud=us1−ud. For the first-order au-
tocatalytic reaction, the scalar fieldu can be interpreted as
the local relative concentration of reactant B,CB/ sCA+CBd.
There exist similar front solutions for models of higher order
autocatalytic reactions likeA+nB→ sn+1dB with corre-
sponding reaction termfsud=uns1−ud. In the case of com-
bustion u is a normalized temperature field and the two
phases represent the fresh mixture of fuel and oxidizer at low
temperature and the completely burnt state at high tempera-
ture, respectively. The reaction rate depends on the tempera-
ture according to the Arrhenius law, resulting in an exponen-
tial form of the source term.

Equation(1) has planar traveling front solutions propagat-
ing at constant speedv f = uv fu with no change of shape so that
usr ,td=u fsr −v ftd. Dimensional analysis shows that the mini-
mum or critical speed isv0=C0saDd1/2. The value of the
constantC0 depends on the form of reaction term and can be
obtained analytically for quadratic and cubic autocatalysis as
C0

sn=1d=2 andC0
sn=2d=1/Î2. Note that planar fronts may also

exist for speeds larger thanv0 [12,13]. In the case of an
initial value problem it may be shown that planar fronts
propagate at the critical speedv0 provided the initial condi-
tion on u is localized or decays in space sufficiently fast. At
critical front speed conditions the front propagation mecha-
nism is initiated by diffusive transport at the leading edge of
the front. However, for supercritical front speed conditions
the mechanism is not diffusion initiated, but differs in that a
local transition fromu=0 to u=1 occurs at different points
ahead of the front with a time delay, the reaction front speed

*Present address: Division of Engineering and Applied Sciences,
Harvard University, Cambridge, MA 02138, USA. Electronic ad-
dress: ckoudell@deas.harvard.edu

†Electronic address: zoltan@cnls.lanl.gov

PHYSICAL REVIEW E 70, 026307(2004)

1539-3755/2004/70(2)/026307(8)/$22.50 ©2004 The American Physical Society70 026307-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/15144907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


determining delay itself being controlled by the precise
shape of the initial condition. Consequently any meaningful
numerical experiments ought to take into account the “sen-
sitivity to initial conditions:” of the front propagation speed,
without which uncontrolled transients may bias the experi-
mental results and furthermore it is preferable to select initial
conditions guaranteeing the critical speed as the steady state
front speed.

In the presence of a fluid flow the evolution of a passively
advected, reactive scalar field is governed by an advection-
reaction-diffusion equation written in nondimensional vari-
ables as

] u

] t
+ v · ¹ u = Pe−1¹2u + Da fsud, s3d

wherev is a prescribed velocity field dependent on space and
time only. Further, for characteristic length and velocity
scales,L and U, Pe=U /LD and Da=La /U are the dimen-
sionless Péclet and Damköhler numbers, respectively. The
Péclet number represents the ratio of advective and diffusive
transport, while the Damköhler number is the ratio of the
characteristic time scales of advection and reaction. Also
note that the dimensionless time is scaled by the character-
istic advective time scaleT=L /U. For concreteness we may
assume thatL is the integral scale of the flow andU is the
root-mean-square velocity obtained from a spatial average.

The autocatalytic process described by Eq.(3) has been
investigated for the case of unsteady laminar flows in
bounded domains[14] and open flows with a bounded mix-
ing region[15]. Front propagation in simple steady laminar
flows was studied recently in Refs.[16–18]. For the case of
steady cellular flows it was shown that for small diffusivity
sPe@1d in the slow reaction regimesDa!1d the front speed
scales asv f /v0,Pe−1/4, independent of Da, while for fast
reactions sDa@1d, the front speed scales asv f /v0

,Pe−1/4Da−1/2 [16]. In another recent work[19] rigorous
bounds for FKPP front propagation speeds in simple flow
geometries have been derived. More closely related to the
present study are the investigations of front propagation in a
two-dimensional stochastic field generated by integration of
a stochastic differential equation[20,21] and meant to repre-
sent a synthetic turbulent velocity field. This work uses a
source representing a cubic autocatalytic reactionku2s1−ud
and focuses primarily on qualitative properties of reaction
fronts generated by synthetic velocity fields. Two types of
generic geometries for the reaction zones are described there,
namely the distributed reaction zone and the sharp wrinkled
front for increasing flow intensities while the reaction rate is
kept constant. The existence of these two regimes was first
predicted by Damköhler[22] and was later observed in labo-
ratory experiments[23].

The so called G-equation limit of Eq.(3) corresponding to
a geometrical optics approximation obtained in the limit
Da→`, Pe→`, and Da/Pe=const describes the propaga-
tion of thin reaction fronts[7,24]. The advantage of the G
equation is that it is amenable to analytical(asymptotic)
treatment for steady or unsteady cellular flows as shown in
Ref. [25] and to scaling analysis for turbulent flow[26].

In the present work we study the effects of incompressible
steady-state Navier-Stokes turbulent velocity fields on the
propagation dynamics of fronts governed by Eq.(3) by direct
numerical simulations. The numerical tool we developed al-
lows us to systematically study the speed-up of reaction
fronts by turbulent fluid mixing in transient and stationary
reaction regimes for a specific range of reaction rates. With
respect to the turbulent velocity field time scales we simu-
late, we focus in particular on the transition from slow reac-
tion rates with broad fronts to moderately fast reaction rates
with sharp fronts, but we do not approach the G-equation
limit in the sense that no reaction considered is much faster
than the fastest turbulent time scale in the flow. In Sec. II we
describe the numerical model and the experimental setup we
used. Section III presents our results and a discussion of our
findings. We conclude the report in Sec. IV.

II. NUMERICAL METHODS AND EXPERIMENTAL
SETUP

A. Turbulence model

While it is often stressed that real fluid flows from turbu-
lent scales down to molecular diffusive scales are intrinsi-
cally three dimensional, we presently wish to explore generic
effects of multiscale turbulent flow fields on front propaga-
tion. Therefore, we simplify the problem by working in the
plane and we consider the front dynamics in a two-
dimensional incompressible turbulent velocity field. Two-
dimensional turbulent flows are also relevant in geophysical
context. We consider a fluid flowing in thesx,yd plane gov-
erned by the two-dimensional Navier-Stokes equation in the
vorticity formulation

] z

] t
+ v · ¹ z = tdrag+ Re−1¹nz + t, s4d

where z is the scalar vorticity, z=s¹3vd ·k, ¹
=si ] /]x , j ] /]yd andk is a unit vector defining thez direc-
tion perpendicular to the flow plane. Further,tdrag is a drag
moment acting as a vorticity sink, Re=U /Lnhyper is the Rey-
nolds number based on the hyperdiffusion coefficientnhyper
and appears as a coefficient multiplying thenth-order hyper-
dissipation operator¹n andt is a force curl acting as a vor-
ticity source. The significance of these right-hand-side terms
is explained in what follows. The vorticity field is related to
the velocity field via the scalar streamfunctioncsx,y,td fol-
lowing the relationsz=−¹2c, u=]c /]y andv=−]c /]x.

Equation(4) was integrated on a doubly periodic domain
of size 2p32p with a spatial resolution of 10242 gridpoints
using a classic Fourier-Galerkin spectral method, but with a
recently proposed formulation for the vorticity sinktdrag. We
assume that the most crucial statistical properties of three-
dimensional multiscale turbulent flows are best mimicked
within a two-dimensional approximation when we consider a
velocity field with spectral properties corresponding to the so
called inverse (upscale) energy cascade range of two-
dimensional turbulence[27,28]. The energy spectrum in this
regime is known to be described by the same power law as
the inertial range spectrum of three-dimensional Kolmog-
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orov 1941 turbulence and scales ask−5/3. A method for gen-
erating just such a flow is described in Ref.[29], SGC for
short, and we follow this approach closely in the present
work. SGC showed that it is possible to generate an inverse
energy cascade in a bounded two-dimensional flow display-
ing the same scaling behavior as that conjectured by Kraich-
nan for an unbounded flow by introducing one forcing
mechanism and two dissipation channels. The force curl,t in
Eq. (4), is acting at small scales in a narrow wave number
band and isd correlated in time. The first dissipation channel
tdrag is a large-scale closure scheme based on the EDQNM
approximation and acts as a large-scale energy sink compat-
ible with the requiredk−5/3 scaling up to the largest resolved
scales. In this respect the approach of SGC differs from all
other upscale energy cascade numerical studies of two-
dimensional turbulence known to us, which consistently use
ad hoc large scale friction schemes. The second dissipation
channel is a strong high-order harmonic hyperdissipation
function strongly suppressing vorticity fluctuations associ-
ated with the direct(downscale) flux of vorticity. Full details
of the numerical model may be found in Ref.[29]. Note that
we use numerical parameters identical to those used in the
original publication validating the numerical scheme. Re-
markably, due to the interplay between the two dissipation
channels the resulting flow field is maintained void of coher-
ent structures for arbitrary times and a forced-dissipative
equilibrium simulation is obtained. We illustrate the resulting
stationary energy spectrum in Fig. 1 where it is seen that we
obtain the Kraichnan 1967 scaling between wave numbers
k=8 andk=215 asEskd=CKre

2/3k−5/3 with CKr <6.5. It is in
this stationary flow that we consider the advection-reaction-
diffusion problem whose numerical model is discussed next.

B. Passively advected reactive species model
and experimental setup

While the Fourier-Galerkin spectral method used for the
turbulent flow simulation has desirable convergence proper-
ties, it is unfortunately not suitable for the integration of the
reactive species. Indeed, in virtue of an unstable(or margin-
ally stable) fixed point u=0 in the reaction dynamics, it is
desirable to adhere to a positive definite numerical method.
We found that the use of a sixth order compact finite differ-
ence method for the spatial derivatives[30] leads to satisfy-
ing results. While the resulting spatial scheme is not strictly
positive definite, compact finite difference schemes neverthe-
less have a good track record for the solution of species
equations in various direct-numerical-simulation/large-eddy-
simulation studies of turbulent combustion problems[31].
We couple the reactive part to the advection-diffusion part of
Eq. (3) via a straightforward Strang splitting scheme and
perform the time integration with a second or fourth order
Runge-Kutta scheme.

Generating time series of stationary progressive reaction
fronts requires the development of a stable numerical model
in order to be able to integrate the system(4) and (3) over
arbitrary long times. This is due to the existence of a tran-
sient regime when starting a front propagation experiment
from a given initial condition on one hand, and the presence
of rather important fluctuations of the turbulent front propa-
gation speedvT around its mean value on the other hand, as
shall be detailed in Sec. III. Given the relatively small size of
the computational domain as defined in the laboratory frame,
the finite front propagation speed and the long integration
times required to overcome the earlier-mentioned con-
straints, we developed a framework operating in a moving
reference frame, to be described in what follows. Let us con-
sider the solution of Eq.(3) in a domain periodic in they
direction and unbounded in thex direction. The boundary
conditions on the scalar are taken to beusx→−` ,y,td=1,
usx→` ,y,td=0, corresponding to the presence of a sink at
x→−` and of a source atx→`. The turbulent flow is
mapped onto this domain by periodic repetition of the veloc-
ity field along thex axis, so thatvsx+2p ,yd=vsx,yd. We
consider three different types of reaction terms correspond-
ing to quadratic and cubic autocatalysis and an exponential
form that is analogous to flame fronts in premixed combus-
tion

fsud = fus1 − ud,u2s1 − ud,s1 − udexps− 1/udg. s5d

We now define the instantenous front speed based on the
bulk reaction rate as in Ref.[19]:

vT =
1

Ly
E

−`

+` E
0

Ly ] u

] t
dxdy. s6d

By substituting Eq.(3) into Eq. (6) and observing that the
integrals of the advective and diffusive transport terms van-
ish along both directions(assuming zero mean flow in thex
direction and periodic boundary conditions in they direction)
we obtain

FIG. 1. Instantaneous kinetic energy spectrum of the turbulent
velocity field.
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vT =
Da

Ly
E

−`

+` E
0

Ly

fsuddxdy, s7d

which identifies a relationship between the scalar fieldu and
the instantenous front propagation speed. Since the earlier
integral has contributions coming from the frontal region
only, the front speed can be approximated by restricting the
outer integral to a finite intervalLx centered around the front,
providedLx is sufficiently large, so that outside this interval
u is very close to the unreactedu=0 or completely consumed
u=1 states. In the regions far behind and far ahead of the
propagating front where the scalar field is almost uniform in
space(u=1 andu=0, respectively), mixing has no effect and
there can be no contribution from these regions to the dy-
namics of the reactive species. The region where the reaction
is active, however, is changing in time advancing along thex
axis. In order to maintain the front in the center of the com-
putational domain, we therefore consider the Galilean trans-
formed rectangular domainsx8 ,yd of size Lx=n2p ,Ly=2p,
moving with the instantaneous front speed,vT so that

x8 = x −E
0

t

vTstddt. s8d

The boundary conditions are periodic iny and the
x8-boundary conditions areusx8=0,yd=1,usx8=Lx,yd=0.
The length of the domain,Lx, is chosen to be much larger
than the width of the front so that the presence of the bound-
aries have negligible effect on the propagation speed. In
practice doubling the basic 2p32p squaresn=2d is suffi-
cient for most front widths considered in the present study.
The speed of the moving reference frame, is set by the con-
straint that the first moment of the progress variable within
the computational domain keeps a constant value

kulstd ;
1

LxLy
E

0

Lx E
0

2p

usx8,y,tddx8dy=
1

2
. s9d

This condition ensures that the front stays in the center of the
computational domain and it allows us to make integrations
over arbitrarily long times as required in order to obtain good
samples of arbitrary quality of the fluctuating front speed.

Preliminary numerical experiments with various initial
conditions have shown that the initial adjustment phase to-
ward a stationary propagating front is strongly dependent on
initial conditions. The dependence is related to the width of
the initial condition compared to the width of the stationary
front. In order to avoid these artificial transient effects we
selected the stationary front solutions of the reaction-
diffusion Eq. (1) as initial conditions in Eq.(3). The initial
conditions were obtained from numerical integration of the
corresponding one-dimensional reaction-diffusion equation
in a stationary mediumsv=0d using a step function as initial
condition.

For a given statistically steady turbulent velocity field and
a given value of Pe we focus on the Da dependence of the
fronts. The maximum admissible value for Pe(i.e., the small-
est species diffusivity avoiding spectral blocking on the dis-
crete mesh) was determined by considering a series of runs

of a forced passively advected and chemically inert species.
There the Pe number was increased so as to obtain a quali-
tatively sound Obukhovk−5/3 scaling range and a diffusion
range for the species variance spectrum. The resulting nu-
merical value selected was Pe=1.63103. It was then found
experimentally that in the case of the reactive species the Pe
had to be lowered somewhat to a value of Pe=1.2443103.
Indeed the source term is a variance production term and an
increased species diffusivity is necessary to avoid spectral
blocking at the smallest scales. We estimated the Damköhler
numbers Da to be considered with respect to turbulent time
scales estimated from the kinetic energy spectrum. To first
approximation we can associate a characteristic time scale
tskd to each length scaleL,1/k in the flow using the kinetic
energy spectrum. From dimensional analysis we find that
thattskd,2CKr

−1/2e−1/3k−2/3. For the inverse cascade simulated
presently withk in Ref. [8] (p. 215) we get time scales in the
rangetmin<0.033,tmax<0.30. The Damköhler number has
been varied in the range 0.025,Da,12.8, that represents
reaction timescales,tr ,Da−1 slower or comparable to the
turbulent time scales. For small Da the reaction is very slow,
therefore a very long time is needed to reach the stationary
regime of the front propagation, but their treatment is un-
problematic. However, the range of attainable Da is bounded
earlier by the fact that fronts becomes very sharp at high
values. Computing extreme cases and thereby resolving the
sharp fronts requires either higher spatial resolutions of the
numerical model or the use of altogether alternative numeri-
cal schemes allowing the representation of quasidiscontinu-
ities. Also note that in the case of the quadratic reaction term
us1−ud, due to the instability of the unreacted phase(un-
stable fixed point atu=0), the highest Da that could be
achieved with the present numerical method based on sixth
order compact finite difference schemes was 1.6.

III. RESULTS AND DISCUSSION

The turbulent flow distorts the initial planar front and pro-
duces a complex front structure. It thus increases the area
over which the reaction is active, enhancing the bulk reaction
rate and the front propagation speed.

After a transient acceleration time the turbulent front
speed saturates and reaches a statistically stationary state.
The instantenous front speed, based on the bulk reaction rate
was obtained from the scalar fieldusr ,td according to Eq.
(7). The temporal evolution of the front speed in the turbu-
lent flow is shown in Fig. 2 for some representative values of
the Damköhler number Da for quadratic autocatalysis.

All qualitative features of the front dynamics and the
structure of the fronts in the stationary state were found to be
very similar for the three types of reaction dynamics consid-
ered. There are, however, differences in the numerical values
of the propagation speed.

The average front speed in the stationary regime increases
with Da and the time needed to reach the statistically station-
ary state is longer for small Da. Even in the stationary state
the instantaneous front speed fluctuates in time. These fluc-
tuations are stronger when the reaction is fast(see Fig. 2).
We believe that the fluctuations of the propagation speed are
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related to the finite width of the channel. The size of the
largest coherent structures within the front is set by the inte-
gral scale,L=p /4, of the turbulent flow(the characteristic
size of the largest eddies). In our simulations the width of the
channel is only eight times larger than the integral scale. In a
much wider channel,Ly@L, the fluctuations would presum-
ably average out and lead to an almost constant propagation
speed. However, numerical simulations in a much wider
channel and the generation of turbulent flow over scales
much larger than the integral scale would be computationally
very expensive and require additional memory afforded only
by the use of distributed computing. Therefore, we use an
alternative approach by performing simulations over a long
time period, so that a well defined average front speed can be
determined. It is assumed, that this time-averaged front
speed is not sensitive to the width of the channel and is the
same as the constant asymptotic front speed corresponding to
the limit Ly→`.

Snapshots of typical front structures in the stationary re-
gime are presented in Fig. 3 for three different reaction rates.
When Da is small the reaction zone is broad, extending over
distances larger than the integral scale along thex direction.
This explains the long transient time necessary to buildup the
broad front structure. In case of larger Damköhler numbers
the front structure becomes sharper and the reaction zone is
confined to a narrow region. The average front profiles, ob-
tained by averaging the concentration field along they axis
(Fig. 4) shows the broadening of the front along thex direc-
tion as Da is decreased.

Apart from a change in the width of the reaction zone, the
fluctuations in the transverse direction also depend on the
Damköhler number. This can be characterized by the prob-
ability density function of the scalarpu0

fusx=x0,ydg along
transectsx=x0 corresponding to different average values of
the progress variable,kusx=x0,ydl=u0 (Fig. 5). For slow re-
actions the pdfs are distributed in a small interval around the
meanu0. When the Damköhler number is large the distribu-
tions are mainly concentrated to the extreme values,u=0 and
u=1, and the probability of intermediate concentration val-
ues is rather small.

The main quantity of interest is the time-averaged front
speed and its dependence on the reaction rate. The front

FIG. 2. Instantenous front speed as a function of time obtained
from the bulk reaction rateffsud=us1−udg.

FIG. 3. Snapshots of the front structureusx,yd for fsud=us1
−ud, after a statistically stationary state has been reached. The val-
ues of the Damköhler numbers are 0.05, 0.2 and 0.8(from top to
bottom).

FIG. 4. Front profiles obtained by calculating the average con-
centration along the direction transverse to the propagation(y axis).
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speed normalized by the rms velocity in the turbulent flow is
presented in Fig. 6 for the three different types of source
terms stated in Eq.(5) earlier. The vertical bars show the
standard deviation of the fluctuating front speed in the sta-
tionary state. For small Da the bars are not visible since the
front speed is essentially constant in time after the transient
acceleration period.

For small Da the front speed follows an approximately
Da1/2 dependence. The stirring by the turbulent flow acceler-
ates the propagation speed of the reaction-diffusion front by
a constant factor, that is independent of Da:

S= vT/v0 < 9.5, Da! tmax
−1 . s10d

Note also, that the acceleration factorS is independent of the
details of the reaction dynamics defined by the source term
fsud. This shows that the acceleration factor in the slow re-
action case is an inherent property of the transport processes.
In this regime the chemical reaction is slower than the slow-
est eddies. The transport due to stirring, on time scales larger
than the eddy turnover times of the largest(and slowest)
eddies, can be described as a turbulent diffusion process.
This suggests, that the front propagation speed can be ob-
tained from the formula for the speed of the reaction-

diffusion front in a stationary mediumv0 stated in the Intro-
duction, by replacing the molecular diffusion coefficient with
an effective turbulent diffusivity[22].

To test this prediction we measured the turbulent diffusiv-
ity numerically by observing the dispersion of a passive sca-
lar sDa=0d along the channel due to the same turbulent flow.
The initial distribution was chosen to be Gaussian along the
channel and uniform in the transverse direction. Assuming
that for long times and on length scales larger than the inte-
gral scale the dispersion is well modeled by a diffusive pro-

cess the concentration averaged along they axis sûd should
satisfy a diffusion equation

] û

] t
= DTDû s11d

with the solution

ûsx,td =
1
Ît

exp
− x2

4DTt
, s12d

whereDT is the turbulent diffusivity. By monitoring the in-
crease of the width in time of the Gaussian profiles we ob-
tainedDT=7.734310−2. Using this diffusivity in the laminar
front speed formula we indeed obtain the measured values of
the front speed for small Da with good approximation. Com-
paring DT with the molecular diffusivity, in the same non-
dimensional unitsD=Pe−1=8.037310−4 we obtain a good
estimate of the acceleration factor

S= ÎDT/D < 9.8. s13d

Still in the small Da regime, the propagation speed turns
out to be relatively insensitive to moderate changes in the
Peclét number. We decreased Pe up to a factor eight and did
not observe any significant change in the front speed(Fig. 6).

FIG. 5. Probability density functions of the concentrationu
along transects taken in the direction perpendicular to the propaga-
tion: (a) slow reaction Da=0.05 and(b) fast reaction Da=0.4.

FIG. 6. Time averaged propagation speeds normalized by the
root-mean-square(rms) turbulent velocity as of function of Da for
three different types of reaction dynamics:8+,38−us1−ud, 8p8
−u2s1−ud, 8)8−s1−udexps−1/ud and Pe=1244 except for the
datapoints indicated by3 that correspond to Pe=156. The vertical
bars show the standard deviation of the fluctuations in time of the
front speed for the quadratic autocatalytic reaction.

C. R. KOUDELLA AND Z. NEUFELD PHYSICAL REVIEW E70, 026307(2004)

026307-6



This can be explained by the fact, that the effective turbulent
diffusion is not affected by the molecular diffusion—it can
be thought of as a noise term added to the fluid particle
trajectories—as long as the molecular diffusion is much
weaker than the diffusion due to the turbulent flow, i.e, Pe
@1.

For larger reaction rates, the reaction time scale Da−1 be-
comes comparable to the eddy turnover times related to the
length scales defining the inverse energy cascade. The front
propagation speed still increases with Da, but the increase is
significantly slower than Da1/2. The enhancement of the front
speed due to turbulence is indeed less efficient for fast reac-
tions,S=vT/v0,ÎDT/D. We propose the following explana-
tion for this behavior. The reaction rate Da defines a charac-
teristic length scalel0sDad,L within the inertial range of the
turbulent flow corresponding to eddies having a turnover
time scale similar to the reaction time,tr ,Da−1. Eddies
smaller thanl0 are faster than the chemical reaction and pro-
duce an effective turbulent diffusion. Eddies larger thanl0 on
the other hand are too slow to be able to disperse the fluid
parcels in the time needed for the reaction to complete and
therefore, they lead to the wrinkling of the front structure as
shown by the strong fluctuations of the scalar field in the
transverse direction(Fig. 5). These eddies do not participate
efficiently in the diffusive transport process, therefore the
enhancement rateS=vT/v0 becomes smaller then the con-
stant factor obtained for slow reactions and decreases with
Da.

The front speed enhancement due to mixingsSd is shown
in Fig. 7 as a function of the ratio between the rms turbu-
lence velocity and the speed of the reaction-diffusion front
Q=U /v0. There have been various theoretical predictions for
the SsQd relationship[32,33]. Our numerical results suggest
a linear relationshipS=1+KQ sK<0.8d in the regime of fast
reactions(corresponding to smallQ). In the largeQ regimeS
is roughly constant as expected for the distributed reaction
zone case discussed earlier. We also note, that in both re-
gimes the data obtained from different types of reactions
seem to collapse on the same curve.

IV. CONCLUSION

Using direct numerical simulations of two-dimensional
turbulent flow we have found two characteristic regimes for
front propagation. When the reaction is slower than all char-
acteristic time scales of the turbulent velocity field, the front

is broad with weak fluctuations in the transverse direction
and the enhancement rate is independent of the Damköhler
number Da. In the fast reaction regime, there is a relatively
sharp wrinkled interface between the regions of fresh and
fully consumed reactant. The turbulent mixing is less effi-
cient in increasing the propagation speed as the reaction be-
comes faster. The transition between the two regimes takes
place when the turbulent propagation speed becomes compa-
rable to the characteristic velocity of the flow.

The slow reaction regime observed in our simulations is
analogous to the one identified in Ref.[16] for the case of
cellular laminar flows. For fast reactions it was found there
that the propagation speed becomes independent of the
Damköhler number. From our results it seems, that contrary
to the case of cellular flows, in the turbulent flow the propa-
gation speed continues to grow with Da, but more slowly
than Da1/2. This difference appears to be a signature of the
multiscale character of the flow. Establishing the exact form
of the dependence of the propagation speed on Da in the fast
reaction regime, requires numerical simulations with much
higher resolution, able to resolve the very sharp front struc-
ture, and progress in theoretical understanding of the phe-
nomenon.
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