1,734 research outputs found

    Generating artificial homologous proteins according to the representative family character in molecular mechanics properties – an attempt in validating an underlying rule of protein evolution

    Get PDF
    AbstractThe molecular mechanics property is the foundation of many characters of proteins. Based on intramolecular hydrophobic force network, the representative family character underlying a protein’s mechanics property is described by a simple two-letter scheme. The tendency of a sequence to become a member of a protein family is scored according to this mathematical representation. Remote homologs of the WW-domain family could be easily designed using such a mechanistic signature of protein homology. Experimental validation showed that nearly all artificial homologs have the representative folding and bioactivity of their assigned family. Since the molecular mechanics property is the only consideration in this study, the results indicate its possible role in the generation of new members of a protein family during evolution

    A primal-dual interior-point relaxation method with adaptively updating barrier for nonlinear programs

    Full text link
    Based on solving an equivalent parametric equality constrained mini-max problem of the classic logarithmic-barrier subproblem, we present a novel primal-dual interior-point relaxation method for nonlinear programs. In the proposed method, the barrier parameter is updated in every step as done in interior-point methods for linear programs, which is prominently different from the existing interior-point methods and the relaxation methods for nonlinear programs. Since our update for the barrier parameter is autonomous and adaptive, the method has potential of avoiding the possible difficulties caused by the unappropriate initial selection of the barrier parameter and speeding up the convergence to the solution. Moreover, it can circumvent the jamming difficulty of global convergence caused by the interior-point restriction for nonlinear programs and improve the ill conditioning of the existing primal-dual interiorpoint methods as the barrier parameter is small. Under suitable assumptions, our method is proved to be globally convergent and locally quadratically convergent. The preliminary numerical results on a well-posed problem for which many line-search interior-point methods fail to find the minimizer and a set of test problems from the CUTE collection show that our method is efficient.Comment: submitted to SIOPT on April 14, 202

    Psychological characteristics and nursing intervention of adolescent patients with oral cavity

    Get PDF
    目的  通过对就诊病例的心理特点分析,总结适时的心理护理干预方法。方法  通过对121例青少年患者的心理定势、期待与满意等方面进行总结。结果与结论  充分了解正畸青少年患者的就诊心态,加强对患者心理护理的干预,以达到最佳治疗效果。Objective: Through the analysis of the psychological characteristics of patients with medical treatment, summarize the timely psychological nursing intervention. Methods: Summarize the mental set, expectation and satisfaction of 121 adolescent patients. Results and Conclusion: To fully understand the orthodontic patients of adolescent mentality,strengthen the psychological nursing of patients of intervention,in order to achieve the best therapeutic effect.

    Reconstruction of 5D5D Cosmological Models From Equation of State of Dark Energy

    Full text link
    We consider a class of five-dimensional cosmological solutions which contains two arbitrary function μ(t)\mu(t) and ν(t)\nu(t). We found that the arbitrary function μ(t)\mu(t) contained in the solutions can be rewritten in terms of the redshift zz as a new arbitrary function f(z)f(z). We further showed that this new arbitrary function f(z)f(z) could be solved out for four known parameterized equations of state of dark energy. Then the 5D5D models can be reconstructed and the evolution of the density and deceleration parameters of the universe can be determined.Comment: 10 pages, 4 eps figures, ws-ijmpd.cls styl

    K2[FeII 3(P2O7)2(H2O)2]

    Get PDF
    The title compound, dipotassium diaqua­bis­(diphosphato)triferrate(II), K2[FeII 3(P2O7)2(H2O)2], was synthesized under solvothermal conditions. The crystal structure is isotypic with its Co analogue. In the structure, there are two crystallographically distinct Fe positions; one lies on an inversion center, the other on a general position. The first Fe2+ cation adopts a regular octa­hedral coordination with six O atoms, whereas the other is coordinated by five O atoms and a water mol­ecule. The [FeO6] octa­hedron shares its trans-edges with an adjacent [FeO5(H2O)] octahedron; in turn, the [FeO5(H2O)] octa­hedron shares skew-edges with a neighbouring [FeO6] octa­hedron and an [FeO5(H2O)] octa­hedron, resulting in a zigzag octa­hedral chain running along [001]. The zigzag chains are linked to each other by the P2O7 diphosphate groups, leading to a corrugated iron diphosphate layer, [Fe3(P2O7)2(H2O)2]2−, parallel to (100). The inter­layer space is occupied by K+ cations, which adopt an eight-coordination to seven O atoms and one water mol­ecule from a neighbouring iron diphosphate layer. Thus, the K+ ions not only compensate the negative charge of the layer but also link the layers into a network structure
    corecore