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The molecular mechanics property is the foundation of many characters of proteins. Based on intra-
molecular hydrophobic force network, the representative family character underlying a protein’s
mechanics property is described by a simple two-letter scheme. The tendency of a sequence to
become a member of a protein family is scored according to this mathematical representation.
Remote homologs of the WW-domain family could be easily designed using such a mechanistic sig-
nature of protein homology. Experimental validation showed that nearly all artificial homologs have
the representative folding and bioactivity of their assigned family. Since the molecular mechanics
property is the only consideration in this study, the results indicate its possible role in the generation
of new members of a protein family during evolution.

� 2010 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
1. Introduction

The amino acid sequence is believed to specify a protein’s atom-
ic structure and biological function [1]. Proteins are diversiform
due to differences in residue sequence. Although their composi-
tions are quite different, some proteins share common biological
properties with one another. For instance, some remotely homolo-
gous proteins can have less than 30% identical residues. However,
the reason for such functional uniformity, which arises from the
diversity of intramolecular details, is still unknown.

Two levels of studies are related to protein homology research:
investigations of a single physical system and those of the unifor-
mity of multiple systems.

(i) The first type refers to studies focusing on the properties of a
biomolecule-solution physical system, including the native
fold, function, and conformational motion. Since only one
system is investigated, the basic and universal physical prin-
ciples, quantities, and methods are applicable in this type of
studies. For example, the free energy of the physical system
per protein is believed to play a vital role in protein folding
[2,3].
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(ii) The second type refers to studies focusing on the reasons
behind the occurrence of homology. This includes the pres-
ent study on why the folding that generates the representa-
tive family biological properties, but not other decoy folds, is
specified as the native structure of a protein family member.
This type of studies usually focuses on something common
within a homolog set, and embodies the selection pressure
during the process of choosing the eligible molecules from
the outcome of the basic physical principle.

As each protein corresponds to a physical system, a set of sys-
tems must be jointly investigated so that some common mecha-
nisms within these systems can be identified. Since multiple
systems are simultaneously focused on, the methodology will be
different from that of a single physical system. For example, as
compositions differ across homologs, the residue interactions that
contribute free energies should also vary in their corresponding
physical systems, especially among those of remote homologs.
Consequently, the similarity in free energy is not a necessary con-
dition in protein homology, and the importance of free energy is
ultimately decreased. Therefore, it is rational that the fundamental
physical principle focusing on the homology of protein evolution is
based on, but not limited to, those at single-system level. At pres-
ent, due to such a shift in the object of research, there is still a gap
between the physical principles of the two levels. In this paper, we
present a novel level of description for a multiple system, and at-
pean Biochemical Societies.
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Fig. 1. Illustrations of hydrophobic force and the FSHFnet algorithm. The hydrophobic force along the virtual line of an H–P residue pair is shown in (A), with the sketch map
of the hydrophobic force’s origin wherein the attractions between water molecules are denoted in gold. As indicated in the flowchart (B), we tried each kind of clustering
scheme and evaluated the performance of HFnet. The clustering scheme with the maximum counts of correctly identified samples in the learning set was selected as the
family specific amino acid classification scheme in FSHFnet. Some details of FSHFnet are shown by examples in (C), including: (I) rewriting protein sequence into successive
overlapping 5-residue units; (II) rewriting quintuplet sequence into H/P quintuplet sequence; (III) drawing a force graph of residue-to-residue interaction in each H/P
quintuplet; (IV) calculating edge-specific probabilities of the occurrences of force states for each column of aligned graphs, and those of the background that are evaluated by
all graphs in a background sequence set; and (V) finding the maximum spanning tree for each graph (the tree is shown in bold line, with the edge weight reflecting the
difference between the occurrence of a force state and that of the background), scoring a sequence, and evaluating the residue clustering scheme.
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tempt to make a step in closing up the two with a simple, empir-
ical, but physics-based, mathematical representation.

Evolution has been the focus of protein science for a long time.
Many efforts have been devoted to the study of sequence [4,5],
structure [6,7] and function [8], which are biological properties
that are suitable for a direct comprehension and are relatively easy
to observe. But some evolutionary events can not be fully investi-
gated without the analysis of physical mechanism. For instance,
the native-structure absent homologs of a disorder protein family
can carry out their biological functions by dynamic conformational
changes. Since structure or distance is no longer important in these
cases, the biological properties of these homologs should be deter-
mined by an physical quantity that is responsible for the change of
movement state of polypeptide or the change of movement ten-
dency, that is, the force. The molecular mechanics property may
be more conserved than the structure [9]. Therefore, there is a
requirement to investigate protein evolution in an aspect of phys-
ics. In particular, the molecular mechanics property is the basis of
side-chain fluctuations, movement of active site loops, structural
exchanges and rearrangements, and other processes that are vital
to protein biological properties. The investigation of such property
has been regarded as a new hotspot of protein evolution [10].

There are vast complexities of interactions in the protein that
can be coped with quantum mechanical, molecular mechanical,
or other treatments. As multiple systems are jointly investigated,
the complexity increases drastically in the study of protein homol-
ogy. To reduce the difficulty involved, a feasible option is to adopt a
coarse-grained scheme that focuses on significant items but still
monitors the secondary factors.

Hydrophobic interactions have been suggested as the driving
force of protein folding [3], and play an important role in protein
function [11]. In an aqueous solution, a hydration shell is formed
on a protein surface by at least two layers of water molecules
[12]. The water molecules that surround a hydrophobic (H) residue
attract one another, resulting in a radial compressive stress on the
amino acid. No such force is loaded on a polar (P) residue. As
shown in Fig. 1A, this results in a force between each residue pair,
and subsequently, a complicated force network in each protein
molecule. This network is a representation of the consequence of
hydration in a corresponding physical system.

In agreement with Frauenfelder’s observation that internal pro-
tein motions or dynamic properties are controlled by the hydration
shell, we suggest that there are some common and representative
family characters in the inbuilt force networks of homologous pro-
teins, which eventually govern the conservation of biological prop-
erties during protein evolution [13]. The maintenance of these
characters would serve as the fundamental physical principle that
potentially governs protein homology. We believe that if this



X. Liu, Y.-P. Zhao / FEBS Letters 584 (2010) 1059–1065 1061
theoretical basis is correct, it should be possible to build the artifi-
cial members of a family accordingly.

The protein design of the remote homologs of a family needs an
efficient process of identifying the eligible non-redundant candi-
date from a huge (20N) sequence space. Therefore, algorithms
based on common basic principles are required. Thus, the design
of remote homologs is suitable for illustrating the validity of a the-
ory that focuses on the underlying rule of protein evolution.

In this study, we introduced the representative family charac-
ters of a hydrophobic force network to the protein design, and at-
tempted to produce the remote artificial members of a protein
family using the family specific hydrophobic force network model
(FSHFnet), which is a fully computational approach. We then con-
firmed the bioactivities of the new members with ligand-binding
experiments. The WW domain, a computationally and experimen-
tally simple model system, was used to test the feasibility of this
approach. Since all of the artificial members share similar function
and folding with their natural counterparts, our scheme was pro-
ven effective in catching the evolutionary information that governs
the conservation of family-representative biological properties
such as structure and natural function.
2. Materials and methods

2.1. Hydrophobic Force network model (HFnet)

The mathematical representation of the representative family
characters of the hydrophobic force network is deduced from mul-
tiple sequence alignment (MSA).

First, the hydrophobic force network is deduced from the sequence.
As illustrated in Fig. 1A, we can determine the coarse-grained
hydrophobic force between a residue pair after the residue se-
quence is rewritten into H/P sequence. The state of the resultant
hydrophobic force, along the virtual line between residues i and j
(j > i), can be written as (0, +1, �1, 0), wherein the types of ij in-
clude HH, HP, PH or PP, respectively [13]. A positive sign means
that the resultant force is pointing towards the C terminal. Since
the solution contributes nearly equal but opposite forces on the
two residues, the resultant force along the virtual line is approxi-
mately zero for the HH case [14]. Then considering each residue
pair, we obtained a representation of the inbuilt network per pro-
tein from sequence information, wherein the residues are treated
as the nodes of the network. The residue-residue virtual lines are
network edges.

Second, a multiple network alignment is conducted from multiple
sequence alignment. As two joint residue columns of MSA corre-
spond to a column of forces, these forces also become aligned, col-
umn by column. This results in the creation of a map from MSA to
the multiple network alignment.

Finally, a residue sequence is scored using statistical approaches.
We characterize the representative feature of a set of force-net-
works/proteins by the consensus of its set members. Since the
force network of a biologically significant protein should be extre-
mely different from that of an unrelated family, we scored the ten-
dency of a sequence to be a member of a protein family by the
deviation of its inbuilt network vis-à-vis its background (see
Appendix for details). The sequences were ranked in decreasing or-
der of their score. A high-scoring sequence was likely to be a mem-
ber of the corresponding protein family.

Several applications showed that the HFnet algorithm can per-
form very well even with an unoptimized residue classification
scheme [15]. For instance, it has been successfully used in uncov-
ering the detailed donut-shaped topological feature of the poly-
peptide relationship [16], identifying the significant sites
responsible for the initial pathogenic structural changes in confor-
mational disease [17], and boosting up the capability of existing
tools in multiple sequence alignment [14].

2.2. Family Specific Hydrophobic Force network model (FSHFnet)

The goal of this study is to design new members of a protein
family according to the HFnet. While there are different functional
groups on a residue, a different exposed/buried state results in a
different biochemical property. The scheme of residue classifica-
tion (H/P) should be family specific in HFnet. Therefore, this study
attempts to determine a clustering scheme specific for the WW do-
main. The 42 natural sequences of the WW domain collected and
aligned by Socolich et al. were selected as the basis of our learning
set [18], 28 of which are natively folded, true samples (TS). Since
the inverse transformation of an H/P classification scheme is unre-
sponsive to the mathematical approach HFnet, there are a total of
219 = 524 288 kinds of non-redundant clustering schemes. We
tried all these schemes and different selections for the threshold
T, and found a scheme with the maximum score of success
Z =

P
nd(if(Sn > T), if(n2{TS})) in identifying true and false signals.

In this formula, Sn is the HFnet score for sequence n, and
if(True) = 1 and if(False) = 0, d(x,y) are the step functions with
d(x,y) = 1 for x = y and d(x,y) = 0 otherwise. With each classification
scheme g, we carried out the HFnet and used different cut-off data
to identify a threshold Tg with the maximum success counts ZTg

g Max.
After each of the clustering schemes was scanned, we identified
the best residue clustering scheme for the WW domain (P = {M, I,
L, W, C, N, Q, E, K}, H = {F, V, A, P, D, R, G, H, S, T, Y}, with Max
ðZTg

g MaxÞ ¼ 39 and T = 1.347). Thirty-nine out of the 42 sequences
could be correctly identified.

According to Livingstone and Barton [19] (shown in Fig. 2 inser-
tion), the typical hydrophobic residues {F, V, A, P, G, H, T, Y} and po-
lar/charged residues {W, C, N, Q, E, K} are properly clustered in our
classification scheme. A further consideration showed that the sub-
stitutability among residues is also significant for the clustering. To
display the consensus sequences of the WW domain, the sequence
logos of the learning set [20] is shown in Fig. 2. At positions 14 and
12, residues I and M are most abundant and have high propensity
in substitution with residues K and E, respectively. As such, I and M
are grouped with K and E, that is, into polar class. Similarly, accord-
ing to the abundant substitutions R M A, D M R, S M T in positions
13, 35 and 15, residues Y, R, and D are classified into hydrophobic
class. When a 5-residue window is sliding along a sequence, the
residues at the N- and C-terminals are covered at a lesser time than
that of the other sites. Therefore, residue L at position 2 has a small
weight and contributes weakly to residue classification. Residue L
may be clustered into the polar class owing to the abundant substi-
tution L M I at position 14.

2.3. Homolog generation

We assumed that an artificial sequence is aligned with the se-
quences in the MSA of the learning set. Before assigning a residue,
however, each site is in blank. For each blank, we assigned a resi-
due selected randomly from those that appeared in the corre-
sponding residue column of MSA. Since all candidate residue
types in the column are treated equally, no type is considered to
be the key residue according to our algorithm. If the sequence de-
signed has a pairwise sequence identity (SI) of no less than 30%
with any of the learning set or with any of the artificial proteins
that have been accepted in the former process, it is rejected. Other-
wise, we further evaluated its significance using the FSHFnet algo-
rithm. It is accepted as a candidate of the remote homolog of the
WW domain if the score is more than the threshold Th; otherwise,
the sequence was rejected. New sequences are then written
further.



Fig. 2. The consensus sequences of the WW domain shown by sequence logos [20], a graphical representation of multiple sequence alignment. The overall height of the stack
indicates the sequence conservation at that position, while the height of the symbols within the stack indicates the relative frequency of each amino acid at that position.
Insertion: Amino acid classification according to physical-chemical properties. This has been proposed by Livingstone and Barton [19], and is probably a scheme to which
most people would agree.
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Through this method, each protein designed has a low pairwise
SI (<30%), either with each other or with each of the proteins in the
learning set. Since our preparative research has shown that the
structural deviations of the proteins designed decrease linearly
with the increase in FSHFnet score as compared to the wild-type
(WT) protein, we chose an increased threshold Th = 1.4 to improve
the success rate. Due to the limitation in the search scope of sam-
pling, only five candidates could be produced by each initial ran-
domization for such a strict scheme. These five candidates of
remote homologs could characterize the maximum scope of non-
redundant sampling.

2.4. Structure prediction

Three-dimensional structures of the five candidates of artificial
remote homologs are predicted by the I-TASSER algorithm [21].
This threading algorithm is developed by Zhang and is deemed to
be the most successful in protein structure prediction [22,23].
For simple cases such as the WW domain, it has been reported that
as compared to the real structure, the algorithm has an accuracy of
less than 3 Å in root mean squared deviation (RMSD). Therefore, I-
TASSER is considered suitable for predicting the overall fold of the
present five candidates. In this study, I-TASSER was only used after
the candidates had been generated and not during protein design.

2.5. Binding assays

The natural proteins of the WW domain recognize proline-rich-
target peptides to carry out their function. This recognition is a
family-representative biological property of the members of the
WW domain’s. Based on the target peptide sequence motifs, WW
domains members are classified into four groups: I, PPxY; II, PPLP;
III, PPR; and IV, pS/pT-P, where x stands for any amino acid, and pS/
pT-P refers to a phosphoserine/phosphothreonine-proline contain-
ing peptide [18]. The protein function of the artificial homolog was
tested using experimental approaches. Since the proteins in the
learning set are mostly of group-I and group-III types, we exam-
ined the binding affinities of the proteins designed to group-I
(GTPPPPYTVG) and group-III peptides (PPGPPPRGPPP).

During the sample preparation, all proteins and peptides were
synthesized with solid phase peptide synthesis using Fmoc-Chem-
istry from SBS Genetech Co. Ltd. The high-purity (>95%) samples
are dissolved into aqueous solutions.

Isothermal titration calorimetry (ITC) measurements were
made using a NANOITC2G calorimeter (TA) at 25 �C, starting with
240–720 lM of a WW domain protein in the sample cell and titrat-
ing 4–8 mM of the group-I or group-III peptide. After detecting the
heat effects of protein binding, the data gathered were fit using the
NaNoAnalysis software provided by the manufacturer, such that
the binding constants can be calculated. We measured the binding
constant KD of a protein to each type of ligand or peptide.

3. Results

3.1. Homologous level of the protein designed

According to the methods of homolog generation, the maxi-
mum sequence identity is 29.4% as a protein designed is compared
with any of the training proteins. Compared with the proteins of
the learning set, the mean sequence identities range from 21.6%
to 23.7% (Table 1). The lowest homology to any of the training
structures is 8.8%. Therefore, the proteins designed have a distant
homology with those of the training set.

3.2. Structure of the proteins designed

According to the I-TASSER algorithm, the deviation in structural
prediction is at most 2.4 ± 1.8 Å in RMSD (as seen in the ‘‘I-TASSER



Table 1
Binding constants (KD) of the artificial remote homologs of the WW domain for each type of ligand. The mean and minimum sequence identities of the artificial proteins are
reported compared with those of the learning set. The maximum identity is 29.4% for each artificial protein. The accuracies of the structures predicted by the I-TASSER algorithm
[21] are listed, together with the RMDS deviations of these structures compared with that of a wild-type (WT) protein (PDBID 1WR4). For the positive control, we measured the
affinities of the WT protein 1WR4 to be 75.2 ± 0.4 lM for the group-I peptide, and weak (not available, N/A) for the group-III peptide. As shown in this table, most artificial remote
homologs belong to the group-III type. It is reasonable. Since most native-folded proteins in the learning set are in the group-I type, the search space for type-I protein is smaller
than that for group-III type during the generation of artificial residue sequence. Thus, more type-III proteins are produced.

Protein sequences Mean
SI (%)

Min
SI (%)

RMSD (Å) KD (lM) of group-I
peptide

KD (lM) of group-III
peptide

I-TASSER
accuracy

Compared
with WT

1:LSAPPWSVFMTPAAHVFFYNSQEQQTTWQPPTSE 23.0 14.7 2.3 ± 1.8 1.8 232.6 ± 29.6 1.4 ± 0.2
2:EVRPDWQMHISDSALPFFLNKKANRSQWKDPTSK 21.6 11.8 2.0 ± 1.6 1.4 223.9 ± 6.4 N/A
3:GMKVPWEQVKHSKKKRFFVHMKTQKSSWQRPRLQ 23.7 14.7 1.9 ± 1.6 1.4 N/A 43.2 ± 5.4
4:IMQSDYEEHLTHMDVVFYHDSQIGTSTWIRPNTE 21.8 8.8 2.3 ± 1.8 1.8 37.7 ± 2.6 42.9 ± 2.7
5:SVASPYQQGIDRNGKPYFYHTNNRRSSWKRPGEH 22.6 14.7 2.4 ± 1.8 1.5 N/A 37.0 ± 0.9
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Accuracy” column of Table 1). The structure prediction is therefore
basically accurate. Moreover, when the structures predicted are
compared with those of the WT protein, the maximum deviation
(RMSD) is small at 1.8 Å. Since the binding assays further confirm
the representative biological function of these artificial proteins,
it can be deduced that the proteins designed fold into a typical
structure of the WW domain.

3.3. Biological function of the protein designed

The ITC results of the first artificial protein are shown in Fig. 3.
In this example, the binding constants KD = 1/K with group-I and
group-III peptides are 217.8 lM and 1.37 lM, respectively. There-
fore, this protein recognizes the group-III peptide in a high affinity,
and exhibits modest affinity to the group-I peptide. The results of
the other artificial proteins are listed in Table 1. All of the artificial
proteins exhibit the ligand-binding affinities in a similar level to
the WT protein. Four of them manifest high affinities to proline-
rich target peptides. Therefore, all artificial remote homologs have
the representative family biological properties of the WW domain.

In this study, we learned the representative mechanistic charac-
teristics of a family from the learning set, and then extended this
physical knowledge to new and non-redundant unknown samples
in the protein phase space. The feasibility of such knowledge
extension is verified by the experiments of protein binding. In
2005, Socolich et al. has designed some artificial proteins using
the identical learning set of WW domain. In their work, the under-
lying sampling of sequence space has been investigated by design-
ing sequence based on site-independent residue propensity, that is,
randomly selecting residue at each position only from those that
are present in the WW-domain family at that position. Experimen-
tal validation showed that none of the protein designed using
underlying sampling is a natively folded protein, or belongs to
WW-domain family. Since the site-independent residue propensity
in the MSA is weak in determining the family specific folding of the
WW protein [18], the success of the present work is a result of the
underlying physical theory and algorithm.
4. Discussion

In biophysics, one fundamental viewpoint is that protein fold-
ing is driven by the hydrophobic interactions in the protein. There
have been several works that made great contributions to the
development of this theory. These include studies by Dill [2] and
Li et al. [3], in which the interaction energies and different param-
eters are introduced to develop a class of coarse-grained model
named the ‘‘HP model.” Due to the significance of hydrophobic
interaction, it is reasonable to deduce that there are certain repre-
sentative family characters within the hydrophobic interaction
systems of different homologous proteins. There is, however, a lack
of theoretical description for such common features. This study
converts this rational opinion into a practical mathematical ap-
proach, and links the hydrophobic interaction system per molecule
and protein evolution physically.

As compared to the HP model, this study has two features. We
used only two residue symbols, which is similar to the HP model.
The focus of this study is to uncover the mechanism that the rep-
resentative family biological properties are endowed to a candi-
date protein. The second aspect is about the physical quantity
under study. For most HP models, the central physical quantity is
free energy or interaction energy. Therefore, distance or the dis-
tance threshold must be introduced to evaluate the energetic prop-
erty. Since the present algorithm focuses on the hydrophobic force
vector, distance is no longer a necessary physical quantity here.
Consequently, although the current approach uses just indices for
HH/HP/PH/PP interaction, the physical quantity used to character-
ize the interaction is the force vector and not the energetic item as
that of HP models. Moreover, due to the absence of distance, the
indices of 0/+1/�1/0 are not meant to be meaningful in an ener-
getic manner.

Protein design is an approach of inverse folding that requires an
understanding of molecular interactions, which stabilize the pro-
teins in a specific native fold. From a physical point of view, the se-
quence identified from an enormous sequence space must have the
chosen structure as a free energy minimum. This can be done by
the computational protein design algorithm, which uses energy
functions to evaluate how mutations would affect a protein’s struc-
ture and function [24–26]. A combination of molecular mechanic,
knowledge-based, and empirical terms is generally used in typical
energy functions [27]. A fast and accurate energy function is still a
challenge in computational protein design. The present approach
provides a new scheme that relies not on energy function but on
the empirical force network of intramolecular interactions trained
from the multi-alignment of homologous sequences. In this
scheme, the only requirement is the use of some native homolo-
gous sequences of a family and other decoy sequences. Since struc-
tural information is not necessary, the requirement of protein
design is not as restrictive as other methods. For example, the 42
natural sequences of the WW domain are clustered by sequence
alignment, and only seven of them have structural data. The clus-
tering of a training set can be accomplished quite well by sequence
alignment tools. Therefore, the present scheme is a handy and
powerful tool in protein design, and in candidate filtration. To
the best of our knowledge, this is the first two-letter algorithm that
can produce a very distant homolog with a high success rate of
conserving the representative biological properties of a family.

Since only two letters are used in rewriting residue sequence,
the present algorithm is extremely simple. An explicit and effective
approach that represents the fundamental physical principle in



Fig. 3. Results of heat changes and data fitting made by the isothermal titration calorimeter NANOITC2G and the software NaNoAnalysis, respectively. The binding assays of
artificial protein 1 with group-I and group-III peptides are shown as examples. The binding constants can be calculated by KD = 1/K. (A) The 500 lM artificial protein 1 was
prepared in the sample cell. The 8 mM group-I peptide was injected into the cell with 5 ll per time, every 300 s. Data on heat changes are shown in (A1) and are fitted as
reported in (A2). Data on the first injection were omitted because they are not accurate due to the initialization of the device. The results reported in (B1) and (B2) are of
group-III peptide (5.3 mM) titrating into artificial protein 1 (250 lM), using a similar approach.
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evolution is required for the success of such a simple model. There-
fore, a simple approach using the H/P score of individual sites, but
not the network, may not achieve similar results. Since the residue-
residue interactions are most prominent within a window of five
residues [28], the algorithm works well with quintuplet. Protein
design is accomplished for the WW domain where long distance
interaction, such as the S–S bond, is not conserved. Although more
factors may be considered for the conservation of long distance
interaction, we believe that the residue quintuplet should contrib-
ute the dominant information.

In this study, the molecular mechanics property contributed by
hydrophobic interaction is the only factor we considered. The re-
sults of our approach showed that the representative family char-
acter of the molecular mechanics property is sufficient for the
generation of new members of the WW domain. We propose that
the mechanistic feature, especially that contributed by hydropho-
bic effects, is important in governing protein evolution.

There are two aspects of protein evolution: variability and
robustness. Variability, also called ‘‘protein evolvability,” is the
capability of proteins to rapidly adopt a new function within exist-
ing folds, or even adopt entirely new folds. Meanwhile, robustness
is the capability of proteins to conserve representative family bio-
logical properties and thus some native biological functions can be
performed. The scientific viewpoints are inconsistent: some evi-
dences show that protein structures are changeable in sequence;
while others claim that few mutations can lead to big changes in
protein structure [29–31]. It is a widely discussed problem how
structural robustness and innovation can exist at the same time.
Recently, scientists tend to override the puzzling problem related
to the variation of structures exhibited in native state, but reveal
the common cause of these phenomena in a mechanistic view so
that an in-depth uniform perspective can be achieved [32,10].
Focusing on variability, Tokuriki and Tawfik suggested an ‘‘avant-
garde view” in 2009 that protein dynamism, which mediates alter-
nate folds and functions, is the foundation of ‘‘protein evolvability.”
The present study suggests that the conservation of the molecular
mechanics property is a central descriptor of protein robustness. It
indicates that the mechanistic feature is the foundation of protein
evolution and is thus worthy of further research.
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Appendix. Details of the Hydrophobic Force network model
(HFnet)

Since the cost of a complete consideration of the forces in an N
residue protein is extremely high (C2

N forces), we decided to focus
on a localized network. A protein sequence is treated as successive
overlapping five-residue units. As shown in Fig. 1C, we assigned
the first quintuplet to the third residue, the second to the fourth,
and so on, until finally, the last quintuplet was assigned to the last
residue but two. A quintuplet was assigned to a position corre-
sponding to its central residue. If there is a gap in the MSA, we also
insert a gap in the quintuplet sequence alignment. Therefore, the
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quintuplet sequences are aligned with the same gap positions as
the original MSA, but with four additional gaps on the first two
and last two sites in each sequence. A column of residues in MSA
corresponds to a column of aligned quintuplets, with the central
residues identical to those of the residue column.

In each unit, the C2
5 ¼ 10 residue-residue virtual lines (Edges, E)

and the five residues (Vertices, V) form a complete graph G = (V, E).
In this way, the representation of the whole force network is sim-
plified to a sequence of successive graphs with a definite force state
along each edge. Since these force graphs are also aligned due to
multiple network alignment, for edge (i, j) of graph column k, the
probability of the occurrence of force state l can be calculated as

Pk
ijðlÞ ¼

P

n¼1;GnkRgap

dðl; f nk
ij Þ

P

n¼1;GnkRgap

1
ð1Þ

wherein n is the sequence index, the step function d(x,y) equals 1
for x = y and d(x,y) = 0 otherwise, and f nk

ij is the force state in force
graph Gnk. For a sequence set, there are specific statistical features
that can be considered as the commonness of its members, that
is, the background feature. To describe such trivial feature, a model
of background force graph can be constructed using the consensus
of all graphs contained in a background set B. The probability of
force state l contributed by the background can be calculated as

Q ijðlÞ ¼

P

G2B
dðl; f G

ij Þ
P

G2B
1

ð2Þ

To evaluate the difference between the occurrence of force state
f nk
ij and that contributed by the trivial background,

Dnk
ij ¼ jP

k
ijðf nk

ij Þ � Qijðf nk
ij Þj is introduced as the weight of edge (i, j)

in graph Gnk. We believe that the force network of a biologically
significant protein should be remarkably different from that of
the background. Therefore, we find the most significant non-
redundant interactions by identifying the maximum spanning tree
(MST) [33] in each force graph Gnk. The weight sum s(Gnk) of MST is
introduced as a description of the deviation. Then the significance
of sequence n is scored by the mean of deviation as

Sn ¼

P

k;GnkRgap

sðGnkÞ
P

k;GnkRgap

1
ð3Þ

In evaluating Q, the whole aligned sequences are first used as back-
ground data set. The protein sequences are then arrayed by score Sn

in a descending order. The top-ranked sequences are deemed to be
more significant than those at the end. We update Q by using the
sequences at the bottom as the new background set. Such back-
ground set can be deemed unrelated to the family interested. Then
we score and rank each sequence again until convergence is
achieved. As shown in Eq. (1), there are ð3� 1Þ � C2

5 ¼ 20 probabil-
ities to be calculated in each graph. Since there are only about
20 � N parameters estimated for an N-residue fold, the present
scheme is extremely simple. Although only sequence information
is used, based on the complete graph, the present scheme is a model
of a three-dimensional network.
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