544 research outputs found

    Grp94 Protein Delivers γ-Aminobutyric Acid Type A (GABAA) Receptors to Hrd1 Protein-mediated Endoplasmic Reticulum-associated Degradation

    Get PDF
    This research was originally published in the Journal of Biological Chemistry. Xiao-Jing Di, Ya-Juan Wang, Dong-Yun Han, Yan-Lin Fu, Adam S. Duerfeldt, Brian S. J. Blagg and Ting-Wei Mu.Grp94 Protein Delivers γ-Aminobutyric Acid Type A (GABAA) Receptors to Hrd1 Protein-mediated Endoplasmic Reticulum-associated Degradation. Journal of Biological Chemistry. 2016; 291, 9526-9539.Proteostasis maintenance of γ-aminobutyric acid type A (GABAA) receptors dictates their function in controlling neuronal inhibition in mammalian central nervous systems. However, as a multisubunit, multispan, integral membrane protein, even wild type subunits of GABAA receptors fold and assemble inefficiently in the endoplasmic reticulum (ER). Unassembled and misfolded subunits undergo ER-associated degradation (ERAD), but this degradation process remains poorly understood for GABAA receptors. Here, using the α1 subunits of GABAA receptors as a model substrate, we demonstrated that Grp94, a metazoan-specific Hsp90 in the ER lumen, uses its middle domain to interact with the α1 subunits and positively regulates their ERAD. OS-9, an ER-resident lectin, acts downstream of Grp94 to further recognize misfolded α1 subunits in a glycan-dependent manner. This delivers misfolded α1 subunits to the Hrd1-mediated ubiquitination and the valosin-containing protein-mediated extraction pathway. Repressing the initial ERAD recognition step by inhibiting Grp94 enhances the functional surface expression of misfolding-prone α1(A322D) subunits, which causes autosomal dominant juvenile myoclonic epilepsy. This study clarifies a Grp94-mediated ERAD pathway for GABAA receptors, which provides a novel way to finely tune their function in physiological and pathophysiological conditions

    Highly efficient and stable planar heterojunction solar cell based on sputtered and post-selenized Sb2Se3 thin film

    Get PDF
    Antimony selenide (Sb2Se3) is regarded as one of the key alternative absorber materials for conventional thin film solar cells due to its excellent optical and electrical properties. Here, we proposed a Sb2Se3 thin film solar cell fabricated using a two-step process magnetron sputtering followed by a post-selenization treatment, which enabled us to optimize the best quality of both the Sb2Se3 thin film and the Sb2Se3/CdS heterojunction interface. By tuning the selenization parameters, a Sb2Se3 thin film solar cell with high efficiency of 6.06% was achieved, the highest reported power conversion efficiency of sputtered Sb2Se3 planar heterojunction solar cells. Moreover, our device presented an outstanding open circuit voltage (VOC) of 494 mV which is superior to those reported Sb2Se3 solar cells. State and density of defects showed that proper selenization temperature could effectively passivate deep defects for the films and thus improve the device performance

    Vaccinium usneoides (Ericaceae), a new species from Yunnan, China

    Get PDF
    Vaccinium usneoides (Ericaceae), a new species from Fugong County of Yunnan Province, China is described and illustrated. This new species belongs to Vaccinium sect. Calcicolus and is most similar to V. brachyandrum, but differs in its branches hanging down, much smaller leaf blades, shorter inflorescences and pedicels, non-glandular tomentellate or densely pubescent inflorescence rachis and pedicels, densely white-pubescent hypanthium and pilose filaments

    Two New Isoquinoline Alkaloids from Litsea cubeba

    Get PDF
    Two new aporphine-type isoquinoline alkaloids, (+)-N-(methoxy-carbonyl)-N-norlauroscholtzine (1) and (+)-N-(methoxy-carbonyl)-N-norglaucine (2), were isolated from Litsea cubeba and identified by spectroscopic techniques (NMR, MS, UV, and IR). Their structures contain an N-(methoxycarbonyl) moiety, which has seldomly been found in the natural products of these analogs. Both compounds 1 and 2 showed no antibacterial activity against Staphylococcus aureus

    Isolation and characterization of ZZ1, a novel lytic phage that infects Acinetobacter baumannii clinical isolates

    Get PDF
    BACKGROUND: Acinetobacter baumannii, a significant nosocomial pathogen, has evolved resistance to almost all conventional antimicrobial drugs. Bacteriophage therapy is a potential alternative treatment for multidrug-resistant bacterial infections. In this study, one lytic bacteriophage, ZZ1, which infects A. baumannii and has a broad host range, was selected for characterization. RESULTS: Phage ZZ1 and 3 of its natural hosts, A. baumanni clinical isolates AB09V, AB0902, and AB0901, are described in this study. The 3 strains have different sensitivities to ZZ1, but they have the same sensitivity to antibiotics. They are resistant to almost all of the antibiotics tested, except for polymyxin. Several aspects of the life cycle of ZZ1 were investigated using the sensitive strain AB09V under optimal growth conditions. ZZ1 is highly infectious with a short latent period (9 min) and a large burst size (200 PFU/cell). It exhibited the most powerful antibacterial activity at temperatures ranging from 35°C to 39°C. Moreover, when ZZ1 alone was incubated at different pHs and different temperatures, the phage was stable over a wide pH range (4 to 9) and at extreme temperatures (between 50°C and 60°C). ZZ1 possesses a 100-nm icosahedral head containing double-stranded DNA with a total length of 166,682 bp and a 120-nm long contractile tail. Morphologically, it could be classified as a member of the Myoviridae family and the Caudovirales order. Bioinformatic analysis of the phage whole genome sequence further suggested that ZZ1 was more likely to be a new member of the Myoviridae phages. Most of the predicted ORFs of the phage were similar to the predicted ORFs from other Acinetobacter phages. CONCLUSION: The phage ZZ1 has a relatively broad lytic spectrum, high pH stability, strong heat resistance, and efficient antibacterial potential at body temperature. These characteristics greatly increase the utility of this phage as an antibacterial agent; thus, it should be further investigated

    Selenium-Containing Protein From Selenium-Enriched Spirulina platensis Attenuates Cisplatin-Induced Apoptosis in MC3T3-E1 Mouse Preosteoblast by Inhibiting Mitochondrial Dysfunction and ROS-Mediated Oxidative Damage

    Get PDF
    Accumulated evidences have verified that cancer chemotherapy may increase the risk of osteoporosis and severely affected the life quality. Osteoclasts hyperactivation was commonly accepted as the major pathogenesis of osteoporosis. However, the role of osteoblasts dysfunction in osteoporosis was little investigated. Our previous study has confirmed that selenium-containing protein from selenium-enriched Spirulina platensis (Se-SP) exhibited enhanced hepatoprotective potential through inhibiting oxidative damage. Herein, the protective effect of Se-SP against cisplatin-induced osteoblasts dysfunction in MC3T3-E1 mouse preosteoblast was investigated, and the underlying mechanism was evaluated. The results indicated that cisplatin dramatically decreased cell viability of preosteoblast by triggering mitochondria-mediated apoptosis pathway. Cisplatin treatment also caused mitochondrial dysfunction and reactive oxide species (ROS)-mediated oxidative damage. However, Se-SP pre-treatment effectively prevented MC3T3-E1 cells from cisplatin-induced mitochondrial dysfunction by balancing Bcl-2 family expression and regulating the opening of mitochondrial permeability transition pore (MPTP), attenuated cisplatin-induced oxidative damage through inhibiting the overproduction of ROS and superoxide anion, and eventually reversed cisplating-induced early and late apoptosis by inhibiting PARP cleavage and caspases activation. Our findings validated that Se-SP as a promising Se species could be a highly effective way in the chemoprevention and chemotherapy of oxidative damage-mediated bone diseases
    • …
    corecore