2 research outputs found

    Stabilization of Natural Organic Matter by Short-Range-Order Iron Hydroxides

    No full text
    Dissolved organic matter (DOM) is capable of modifying the surfaces of soil minerals (e.g., Fe hydroxides) or even forming stable co-precipitates with Fe­(III) in a neutral environment. The DOM/Fe co-precipitation may alter biogeochemical carbon cycling in soils if the relatively mobile DOM is sorbed by soil minerals against leaching, runoff, and biodegradation. In this study, we aimed to determine the structural development of DOM/Fe co-precipitates in relation to changes in pH and C/(C + Fe) ratios using XRD, XPS, Fe K-edge XAS, FTIR, and C-NEXAFS techniques. The results showed that in the system with bulk C/(C + Fe) molar ratios ≤0.65, the ferrihydrite-like Fe domains were precipitated as the core and covered by the C shells. When the C/(C + Fe) molar ratio ranged between 0.71 and 0.89, the emerging Fe–C bonding suggested a more substantial association between Fe domains including edge- and corner-sharing FeO<sub>6</sub> octahedra and DOM. With C/(C + Fe) bulk molar ratios ≥0.92, only corner-sharing FeO<sub>6</sub> octahedra along with Fe–C bonding were found. The homogeneously distributed C and Fe domains caused the enhancement of Fe and C solubilization from co-precipitates. The C/(C + Fe) ratios dominated structural compositions and stabilities of C/Fe co-precipitates and may directly affect the Fe and C cycles in soils

    Role of N‑Linked Glycans in the Interactions of Recombinant HCV Envelope Glycoproteins with Cellular Receptors

    No full text
    Hepatitis C virus (HCV) infection is a major cause of chronic hepatitis and hepatocellular carcinoma. It infects human liver cells through several cellular protein receptors including CD81, SR-BI, claudin-1, and occludin. Previous reports also show that lectin receptors can mediate HCV recognition and entry. The envelope proteins of HCV (E1 and E2) are heavily glycosylated, further indicating the possible roles of lectin receptor–virus interaction in HCV infection. However, there is limited study investigating the relationship of HCV envelope glycoproteins and lectin as well as non-lectin receptors. Here we used surface plasmon resonance to examine the binding affinity of different glycoforms of recombinant HCV envelope protein to receptors and inspected the infectivity and assembly of HCV pseudoparticles composed of different glycoforms of envelope proteins. Our results indicated that DC-SIGN, L-SIGN, and Langerin had higher affinity to recombinant HCV envelope proteins in the presence of calcium ions than non-lectin receptors, and envelope proteins with Man8/9 N-glycans showed approximate 10-fold better binding to lectin receptors than envelope proteins with Man5 and complex type N-glycans. Interestingly, comparing among glycoforms, recombinant envelope proteins with Man5 N-glycans showed the highest binding affinity when interacting with non-lectin receptors. In summary, the glycans on HCV envelope protein play a modulatory role in HCV assembly and infection and direct HCV–receptor interaction, which mediates viral entry in different cells. Receptors with high affinity to HCV envelope proteins may be considered as targets for development of a therapeutic strategy against HCV
    corecore