358 research outputs found

    Lifshitz Scaling Effects on Holographic Superconductors

    Get PDF
    Via numerical and analytical methods, the effects of the Lifshitz dynamical exponent zz on holographic superconductors are studied in some detail, including ss wave and pp wave models. Working in the probe limit, we find that the behaviors of holographic models indeed depend on concrete value of zz. We obtain the condensation and conductivity in both Lifshitz black hole and soliton backgrounds with general zz. For both ss wave and pp wave models in the black hole backgrounds, as zz increases, the phase transition becomes more difficult and the growth of conductivity is suppressed. For the Lifshitz soliton backgrounds, when zz increases (z=1, 2, 3z=1,~2,~3), the critical chemical potential decreases in the ss wave cases but increases in the pp wave cases. For pp wave models in both Lifshitz black hole and soliton backgrounds, the anisotropy between the AC conductivity in different spatial directions is suppressed when zz increases. The analytical results uphold the numerical results.Comment: Typos corrected; Footnote added; References added; To be published in Nuclear Physics

    Delisheng, a Chinese medicinal compound, exerts anti-proliferative and pro-apoptotic effects on HepG2 cells through extrinsic and intrinsic pathways

    Get PDF
    The anti-proliferative, cytotoxic and apoptogenic activities of delisheng, a Chinese medicinal compound, has been investigated. In this study, the hepatocarcinoma cell line (HepG2) and the liver cell line (L-02) were exposed to delisheng (6.25, 50 and 100 μl/ml). Delisheng suppressed the proliferation and viability of normal liver L-02 cells slightly, but strongly inhibited the proliferation and viability of hepatocarcinoma HepG2 cells. The flow cytometric analysis of HepG2 cells demonstrated that delisheng primarily arrested the HepG2 cells at the G1 phase of the cell cycle. Annexin V-FITC/PI staining corroborates the apoptogenic nature of delisheng on HepG2 cells. The anti-proliferative and pro-apoptotic effect of delisheng in HepG2 cells was associated with changes in the Bcl-2/Bax ratio and the induction of caspase-mediated apoptosis. Upregulation of DR5 expression was observed in HepG2 cells after treatment with delisheng. The findings from the present study suggest that delisheng has selective cytotoxic activities against HepG2 cells. Delisheng triggered time- and dose-dependent apoptosis in HepG2 cells by activating the mitochondria-mediated and death receptor-mediated apoptotic pathways

    Lifshitz effects on holographic pp-wave superfluid

    Get PDF
    In the probe limit, we numerically build a holographic pp-wave superfluid model in the four-dimensional Lifshitz black hole coupled to a Maxwell-complex vector field. We observe the rich phase structure and find that the Lifshitz dynamical exponent zz contributes evidently to the effective mass of the matter field and dimension of the gravitational background. Concretely, we obtain the Cave of Winds appeared only in the five-dimensional anti-de Sitter~(AdS) spacetime, and the increasing zz hinders not only the condensate but also the appearance of the first-order phase transition. Furthermore, our results agree with the Ginzburg-Landau results near the critical temperature. In addition, the previous AdS superfluid model is generalized to the Lifshitz spacetime.Comment: 14 pages,5 figures, and 1 table, accepted by Phys. Lett.

    Classification of Traditional Chinese Medicine Syndromes in Patients with Chronic Hepatitis B by SELDI-Based ProteinChip Analysis

    Get PDF
    Traditional Chinese medicine (TCM) syndrome, also called ZHENG, is the basis concept of TCM theory. It plays an important role in TCM practice. There are excess and deficiency syndromes in TCM syndrome. They are the common syndromes in chronic hepatitis B (CHB) patients. Here we aim to explore serum protein profiles and potential biomarkers for classification of TCM syndromes in CHB patients. 24 healthy controls and two cohorts of CHB patients of excess syndrome (n = 25) or deficiency syndrome (n = 19) were involved in this study. Protein profiles were obtained by surface-enhanced laser desorption ionization time-flight mass spectrometry (SELDI-TOF/MS) and multiple analyses were performed. Based on SELDI ProteinChip data, healthy controls and CHB patients or excess and deficiency syndromes in CHB patients were obviously differentiated by orthogonal partial least square (OPLS) analysis. Two significant serum proteins (m/z 4187 and m/z 5032) for classifying excess and deficiency syndromes were found. Moreover, the area under the receiver operating characteristic (ROC) curve was 0.887 for classifying excess and nonexcess syndrome, and 0.700 for classifying deficiency and nondeficiency syndrome, respectively. Therefore, the present study provided the possibility of TCM syndrome classification in CHB patients using a universally acceptable scientific approach

    Serum cytokine profiling analysis for zheng differentiation in chronic hepatitis B

    Get PDF
    Approval document of the research protocol by the Medical Ethics Committee of Shuguang Hospital

    NanoSIMS analysis of water content in bridgmanite at the micron scale: An experimental approach to probe water in Earth’s deep mantle

    Get PDF
    Water, in trace amounts, can greatly alter chemical and physical properties of mantle minerals and exert primary control on Earth’s dynamics. Quantifying how water is retained and distributed in Earth’s deep interior is essential to our understanding of Earth’s origin and evolution. While directly sampling Earth’s deep interior remains challenging, the experimental technique using laser-heated diamond anvil cell (LH-DAC) is likely the only method available to synthesize and recover analog specimens throughout Earth’s lower mantle conditions. The recovered samples, however, are typically of micron sizes and require high spatial resolution to analyze their water abundance. Here we use nano-scale secondary ion mass spectrometry (NanoSIMS) to characterize water content in bridgmanite, the most abundant mineral in Earth’s lower mantle. We have established two working standards of natural orthopyroxene that are likely suitable for calibrating water concentration in bridgmanite, i.e., A119(H2O) = 99 ± 13 μg/g (1SD) and A158(H2O) = 293 ± 23 μg/g (1SD). We find that matrix effect among orthopyroxene, olivine, and glass is less than 10%, while that between orthopyroxene and clinopyroxene can be up to 20%. Using our calibration, a bridgmanite synthesized by LH-DAC at 33 ± 1 GPa and 3,690 ± 120 K is measured to contain 1,099 ± 14 μg/g water, with partition coefficient of water between bridgmanite and silicate melt ∼0.025, providing the first measurement at such condition. Applying the unique analytical capability of NanoSIMS to minute samples recovered from LH-DAC opens a new window to probe water and other volatiles in Earth’s deep mantle

    3D-IDS: Doubly Disentangled Dynamic Intrusion Detection

    Full text link
    Network-based intrusion detection system (NIDS) monitors network traffic for malicious activities, forming the frontline defense against increasing attacks over information infrastructures. Although promising, our quantitative analysis shows that existing methods perform inconsistently in declaring various unknown attacks (e.g., 9% and 35% F1 respectively for two distinct unknown threats for an SVM-based method) or detecting diverse known attacks (e.g., 31% F1 for the Backdoor and 93% F1 for DDoS by a GCN-based state-of-the-art method), and reveals that the underlying cause is entangled distributions of flow features. This motivates us to propose 3D-IDS, a novel method that aims to tackle the above issues through two-step feature disentanglements and a dynamic graph diffusion scheme. Specifically, we first disentangle traffic features by a non-parameterized optimization based on mutual information, automatically differentiating tens and hundreds of complex features of various attacks. Such differentiated features will be fed into a memory model to generate representations, which are further disentangled to highlight the attack-specific features. Finally, we use a novel graph diffusion method that dynamically fuses the network topology for spatial-temporal aggregation in evolving data streams. By doing so, we can effectively identify various attacks in encrypted traffics, including unknown threats and known ones that are not easily detected. Experiments show the superiority of our 3D-IDS. We also demonstrate that our two-step feature disentanglements benefit the explainability of NIDS.Comment: Accepted and appeared in the proceedings of the KDD 2023 Research Trac
    corecore