35 research outputs found

    Tumor-Targeted Delivery of IL-2 by NKG2D Leads to Accumulation of Antigen-Specific CD8+ T Cells in the Tumor Loci and Enhanced Anti-Tumor Effects

    Get PDF
    Interleukin-2 (IL-2) has been shown to promote tumor-specific T-cell proliferation and differentiation but systemic administration of IL-2 results in significant toxicity. Therefore, a strategy that can specifically deliver IL-2 to the tumor location may alleviate concerns of toxicity. Because NKG2D ligands have been shown to be highly expressed in many cancer cells but not in healthy cells, we reason that a chimeric protein consisting of NKG2D linked to IL-2 will lead to the specific targeting of IL-2 to the tumor location. Therefore, we created chimeric proteins consisting of NKG2D linked to Gaussia luciferase (GLuc; a marker protein) or IL-2 to form NKG2D-Fc-GLuc and NKG2D-Fc-IL2, respectively. We demonstrated that NKG2D linked to GLuc was able to deliver GLuc to the tumor location in vivo. Furthermore, we showed that TC-1 tumor-bearing mice intramuscularly injected with DNA encoding NKG2D-Fc-IL2, followed by electroporation, exhibited an increased number of luciferase-expressing E7-specific CD8+ T cells at the tumor location. More importantly, treatment with the DNA construct encoding NKG2D-Fc-IL2 significantly enhanced the therapeutic anti-tumor effects generated by intradermal vaccination with therapeutic HPV DNA in tumor-bearing mice. Therefore, by linking NKG2D to IL2, we are able to specifically deliver IL-2 to the tumor location, enhancing antigen-specific T-cell immune response and controlling tumor growth. Our approach represents a platform technology to specifically deliver proteins of interest to tumor loci

    Novel, genetically induced mouse model that recapitulates the histological morphology and immunosuppressive tumor microenvironment of metastatic peritoneal carcinomatosis

    No full text
    BackgroundPeritoneal carcinomatosis is a hallmark of advanced peritoneal tumor progression, particularly for tubal/ovarian high-grade serous carcinomas (HGSCs). Patients with peritoneal carcinomatosis have poor survival rates and are difficult to treat clinically due to widespread tumor dissemination in the peritoneal cavity.MethodsWe developed a clinically relevant, genetically induced, peritoneal carcinomatosis model that recapitulates the histological morphology and immunosuppressive state of the tumor microenvironment of metastatic peritoneal HGSCs by intraperitoneally injecting shp53, AKT, c-Myc, luciferase and sleeping beauty transposase, followed by electroporation (EP) in the peritoneal cavity of immunocompetent mice (intraperitoneal (IP)/EP mice).ResultsSimilar to the spread of human ovarian cancers, IP/EP mice displayed multiple tumor nodules attached to the surface of the abdomen. Histopathological analysis indicated that these tumors were epithelial in origin. These IP/EP mice also displayed a loss of CD3+ T cell infiltration in tumors, highly expressed inhibitory checkpoint molecules in tumor-infiltrating and global CD4+ and CD8+ T cells, and increased levels of transforming growth factor-β in the ascites, all of which contribute to the promotion of tumor growth.ConclusionsOverall, our tumor model recapitulates clinical peritoneal HGSC metastasis, which makes it ideal for preclinical drug screening, testing of immunotherapy-based therapeutics and studying of the tumor biology of peritoneal carcinomatosis

    Combined Administration with DNA Encoding Vesicular Stomatitis Virus G Protein Enhances DNA Vaccine Potency â–¿

    No full text
    DNA vaccines have recently emerged at the forefront of approaches to harness the immune system in the prevention and treatment of viral infections, as well as the prevention and treatment of cancers. However, these vaccines suffer from limited efficacy since they often fail to produce significant antigen-specific CD8+ T-cell responses. We report here a novel concept for DNA vaccine design that exploits the unique and powerful ability of viral fusogenic membrane glycoproteins (FMGs) to couple concentrated antigen transfer to dendritic cells (DCs) with local induction of the acute inflammatory response. Intramuscular administration into mice by electroporation technology of a plasmid containing the FMG gene from vesicular stomatitis virus (VSV-G)—together with DNA encoding the E7 protein of human papillomavirus type 16, a model cervical cancer antigen—elicited robust E7-specific CD8+ T-cell responses, as well as therapeutic control of E7-expressing tumors. This effect could potentially be mediated through the immunogenic form of cellular fusion and necrosis induced by VSV-G, which in a concerted fashion provokes leukocyte infiltration into the inoculation site, enhances cross-presentation of antigen to DCs, and stimulates them to mature efficiently. Thus, the incorporation of FMGs into DNA vaccines holds promise for the successful control of viral infections and cancers in the clinic

    Development of a DNA Vaccine Targeting Human Papillomavirus Type 16 Oncoprotein E6

    No full text
    Human papillomavirus (HPV), particularly type 16 (HPV-16), is present in more than 99% of cervical cancers. The HPV oncoproteins E6 and E7 are constantly expressed and therefore represent ideal targets for HPV vaccine development. We previously developed DNA vaccines encoding calreticulin (CRT) linked to HPV-16 E7 and generated potent E7-specific CD8(+) T-cell immune responses and antitumor effects against an E7-expressing tumor. Since vaccines targeting E6 also represent an important strategy for controlling HPV-associated lesions, we developed a DNA vaccine encoding CRT linked to E6 (CRT/E6). Our results indicated that the CRT/E6 DNA vaccine, but not a wild-type E6 DNA vaccine, generated significant E6-specific CD8(+) T-cell immune responses in vaccinated mice. Mapping of the immunodominant epitope of E6 revealed that an E6 peptide comprising amino acids (aa) 48 to 57 (E6 aa48-57), presented by H-2K(b), is the optimal peptide and that the region of E6 comprising aa 50 to 57 represents the minimal core sequence required for activating E6-specific CD8(+) T lymphocytes. We also demonstrated that E6 aa48-57 contains cytotoxic T-lymphocyte epitopes naturally presented by E6-expressing TC-1 cells. Vaccination with a CRT/E6 but not a CRT/mtE6 (lacking aa 50 to 57 of E6) DNA vaccine could protect vaccinated mice from challenge with E6-expressing TC-1 tumors. Thus, our data indicate that E6 aa48-57 contains the immunodominant epitope and that a CRT/E6 DNA vaccine may be useful for control of HPV infection and HPV-associated lesions

    Salmonella immunotherapy engineered with highly efficient tumor antigen coating establishes antigen-specific CD8+ T cell immunity and increases in antitumor efficacy with type I interferon combination therapy

    No full text
    ABSTRACTBacteria-based cancer therapy employs various strategies to combat tumors, one of which is delivering tumor-associated antigen (TAA) to generate specific immunity. Here, we utilized a poly-arginine extended HPV E7 antigen (9RE7) for attachment on Salmonella SL7207 outer membrane to synthesize the bacterial vaccine Salmonella-9RE7 (Sal-9RE7), which yielded a significant improvement in the amount of antigen presentation compared to the previous lysine-extended antigen coating strategy. In TC-1 tumor mouse models, Sal-9RE7 monotherapy decreased tumor growth by inducing E7 antigen-specific immunity. In addition, pairing Sal-9RE7 with adjuvant Albumin-IFNβ (Alb-IFNβ), a protein cytokine fusion, the combination significantly increased the antitumor efficacy and enhanced immunogenicity in the tumor microenvironment (TME). Our study made a significant contribution to personalized bacterial immunotherapy via TAA delivery and demonstrated the advantage of combination therapy

    Xenogeneic Human p53 DNA Vaccination by Electroporation Breaks Immune Tolerance to Control Murine Tumors Expressing Mouse p53

    Get PDF
    <div><p>The pivotal role of p53 as a tumor suppressor protein is illustrated by the fact that this protein is found mutated in more than 50% of human cancers. In most cases, mutations in p53 greatly increase the otherwise short half-life of this protein in normal tissue and cause it to accumulate in the cytoplasm of tumors. The overexpression of mutated p53 in tumor cells makes p53 a potentially desirable target for the development of cancer immunotherapy. However, p53 protein represents an endogenous tumor-associated antigen (TAA). Immunization against a self-antigen is challenging because an antigen-specific immune response likely generates only low affinity antigen-specific CD8<sup>+</sup> T-cells. This represents a bottleneck of tumor immunotherapy when targeting endogenous TAAs expressed by tumors. The objective of the current study is to develop a safe cancer immunotherapy using a naked DNA vaccine. The vaccine employs a xenogeneic p53 gene to break immune tolerance resulting in a potent therapeutic antitumor effect against tumors expressing mutated p53. Our study assessed the therapeutic antitumor effect after immunization with DNA encoding human p53 (hp53) or mouse p53 (mp53). Mice immunized with xenogeneic full length hp53 DNA plasmid intramuscularly followed by electroporation were protected against challenge with murine colon cancer MC38 while those immunized with mp53 DNA were not. In a therapeutic model, established MC38 tumors were also well controlled by treatment with hp53 DNA therapy in tumor bearing mice compared to mp53 DNA. Mice vaccinated with hp53 DNA plasmid also exhibited an increase in mp53-specific CD8<sup>+</sup> T-cell precursors compared to vaccination with mp53 DNA. Antibody depletion experiments also demonstrated that CD8<sup>+</sup> T-cells play crucial roles in the antitumor effects. This study showed intramuscular vaccination with xenogeneic p53 DNA vaccine followed by electroporation is capable of inducing potent antitumor effects against tumors expressing mutated p53 through CD8<sup>+</sup> T cells.</p> </div

    <i>In vivo</i> antibody depletion experiments in mice vaccinated with hp53 DNA plasmid.

    No full text
    <p>(A) Therapeutic schedule. (B) Mice (n = 5) were immunized by hp53 DNA vaccine administered via injection with electroporation and challenged with <b>2</b>×10<sup>5</sup> MC38 cells to determine the effect of lymphocyte subsets on the potency of the hp53 DNA vaccine. CD4, CD8, and NK1.1 depletions were initiated one week before tumor challenge and lasted 30 days after tumor challenge, with treatments at one day intervals. (C) Tumor volume was measured weekly with digital calipers. Data are expressed as volume ± S.E. N = 5 in each group<b>.</b> N = 5 in each group (*, P<0.05 **, P<0.01).</p
    corecore