23 research outputs found

    Microvascular Anastomosis Under 3D Exoscope or Endoscope Magnification: A Proof-Of-Concept Study

    Get PDF
    Background: Extracranial-intracranial bypass is a challenging procedure that requires special microsurgical skills and an operative microscope. The exoscope is a tool for neurosurgical visualization that provides view on a heads-up display similar to an endoscope, but positioned external to the operating field, like a microscope. The authors carried out a proof-of-concept study evaluating the feasibility and effectiveness of performing microvascular bypass using various new exoscopic tools. Methods: We evaluated microsurgical procedures using a three-dimensional (3D) endoscope, hands-free robotic automated positioning two-dimensional (2D) exoscope, and an ocular-free 3D exoscope, including surgical gauze knot tying, surgical glove cutting, placental vessel anastomoses, and rat vessel anastomoses. Image quality, effectiveness, and feasibility of each technique were compared among different visualization tools and to a standard operative microscope. Results: 3D endoscopy produced relatively unsatisfactory resolution imaging. It was shown to be sufficient for knot tying and anastomosis of a placental artery, but was not suitable for anastomosis in rats. The 2D exoscope provided higher resolution imaging, but was not adequate for all maneuvers because of lack of depth perception. The 3D exoscope was shown to be functional to complete all maneuvers because of its depth perception and higher resolution. Conclusion: Depth perception and high resolution at highest magnification are required for microvascular bypass procedures. Execution of standard microanastomosis techniques was unsuccessful using 2D imaging modalities because of depth-perception-related constraints. Microvascular anastomosis is feasible under 3D exoscopic visualization; however, at highest magnification, the depth perception is inferior to that provided by a standard operative microscope, which impedes the procedure

    Preclinical Models of Middle Cerebral Artery Occlusion: New Imaging Approaches to a Classic Technique

    Get PDF
    Stroke remains a major burden on patients, families, and healthcare professionals, despite major advances in prevention, acute treatment, and rehabilitation. Preclinical basic research can help to better define mechanisms contributing to stroke pathology, and identify therapeutic interventions that can decrease ischemic injury and improve outcomes. Animal models play an essential role in this process, and mouse models are particularly well-suited due to their genetic accessibility and relatively low cost. Here, we review the focal cerebral ischemia models with an emphasis on the middle cerebral artery occlusion technique, a gold standard in surgical ischemic stroke models. Also, we highlight several histologic, genetic, and in vivo imaging approaches, including mouse stroke MRI techniques, that have the potential to enhance the rigor of preclinical stroke evaluation. Together, these efforts will pave the way for clinical interventions that can mitigate the negative impact of this devastating disease

    Preclinical models of middle cerebral artery occlusion: new imaging approaches to a classic technique

    Get PDF
    Stroke remains a major burden on patients, families, and healthcare professionals, despite major advances in prevention, acute treatment, and rehabilitation. Preclinical basic research can help to better define mechanisms contributing to stroke pathology, and identify therapeutic interventions that can decrease ischemic injury and improve outcomes. Animal models play an essential role in this process, and mouse models are particularly well-suited due to their genetic accessibility and relatively low cost. Here, we review the focal cerebral ischemia models with an emphasis on the middle cerebral artery occlusion technique, a “gold standard” in surgical ischemic stroke models. Also, we highlight several histologic, genetic, and in vivo imaging approaches, including mouse stroke MRI techniques, that have the potential to enhance the rigor of preclinical stroke evaluation. Together, these efforts will pave the way for clinical interventions that can mitigate the negative impact of this devastating disease

    Anatomical Features of the Deep Cervical Lymphatic System and Intrajugular Lymphatic Vessels in Humans

    No full text
    Background: Studies in rodents have re-kindled interest in the study of lymphatics in the central nervous system. Animal studies have demonstrated that there is a connection between the subarachnoid space and deep cervical lymph nodes (DCLNs) through dural lymphatic vessels located in the skull base and the parasagittal area. Objective: To describe the connection of the DCLNs and lymphatic tributaries with the intracranial space through the jugular foramen, and to address the anatomical features and variations of the DCLNs and associated lymphatic channels in the neck. Methods: Twelve formalin-fixed human head and neck specimens were studied. Samples from the dura of the wall of the jugular foramen were obtained from two fresh human cadavers during rapid autopsy. The samples were immunostained with podoplanin and CD45 to highlight lymphatic channels and immune cells, respectively. Results: The mean number of nodes for DCLNs was 6.91 ± 0.58 on both sides. The mean node length was 10.1 ± 5.13 mm, the mean width was 7.03 ± 1.9 mm, and the mean thickness was 4 ± 1.04 mm. Immunohistochemical staining from rapid autopsy samples demonstrated that lymphatic vessels pass from the intracranial compartment into the neck through the meninges at the jugular foramen, through tributaries that can be called intrajugular lymphatic vessels. Conclusions: The anatomical features of the DCLNs and their connections with intracranial lymphatic structures through the jugular foramen represent an important possible route for the spread of cancers to and from the central nervous system; therefore, it is essential to have an in-depth understanding of the anatomy of these lymphatic structures and their variations

    Editorial: Neurosurgery and Neuroanatomy

    No full text
    Microsurgical anatomy is not only the backbone for neurosurgical operations, but also for technological innovations, novel surgical techniques, a better understanding of the etiopathogenesis of pathologies, and translational medicine from neuroscience to daily clinical practice [...

    The suboccipital, telovelar, transsuperior fovea approach to dorsal pontine lesions

    No full text
    Dorsal pons lesions at the facial colliculus level can be accessed with a suboccipital telovelar (SOTV) approach using the superior fovea safe entry zone. Opening the telovelar junction allows visualization of the dorsal pons and lateral entry at the level of the fourth ventricle floor. Typically, a lateral entry into the floor of the fourth ventricle is better tolerated than a midline opening. This video demonstrates the use of the SOTV approach to remove a cavernous malformation at the level of the facial colliculus. This case is particularly interesting because of a large venous anomaly and several telangiectasias in the pons. Dissections in the video are reproduced with permission from the Rhoton Collection (http://rhoton.ineurodb.org). The video can be found here: https://youtu.be/LqzCfN2J3lY

    The lateral supracerebellar infratentorial, translateral mesencephalic sulcus approach to the mesencephalopontine junction

    No full text
    The lateral supracerebellar infratentorial (SCIT) approach provides advantageous access to lesions located in the lateral mesencephalon and mesencephalopontine junction. For lesions that abut the pial surface, a direct approach is ideal and well tolerated. For deep-seated lesions, the lateral mesencephalic sulcus (LMS) can be used to access lesions with minimal morbidity to the patient. This video demonstrates the use of the SCIT approach via the LMS to remove a cavernous malformation at the level of the mesencephalopontine junction. The use of somatosensory and motor evoked potential monitoring and intraoperative neuronavigation is essential for optimizing patient outcomes. Meticulous, multilayered closure is critical for optimal results in the posterior fossa. For optimal patient outcomes, approach selection for deep-seated lesions should combine the two-point method with safe entry zones. At follow-up, the patient had persistent sensory changes but was otherwise neurologically intact. The video can be found here: https://youtu.be/bHFEZhG8dHw

    The suboccipital, telovelar, transsuperior fovea approach to dorsal pontine lesions

    No full text
    Dorsal pons lesions at the facial colliculus level can be accessed with a suboccipital telovelar (SOTV) approach using the superior fovea safe entry zone. Opening the telovelar junction allows visualization of the dorsal pons and lateral entry at the level of the fourth ventricle floor. Typically, a lateral entry into the floor of the fourth ventricle is better tolerated than a midline opening. This video demonstrates the use of the SOTV approach to remove a cavernous malformation at the level of the facial colliculus. This case is particularly interesting because of a large venous anomaly and several telangiectasias in the pons. Dissections in the video are reproduced with permission from the Rhoton Collection (http://rhoton.ineurodb.org). The video can be found here: https://youtu.be/LqzCfN2J3lY

    Common Challenges and Solutions Associated with the Preparation of Silicone-Injected Human Head and Neck Vessels for Anatomical Study

    No full text
    Neuroanatomy laboratory training is crucial for the education of neurosurgery residents and medical students. Since the brain is a complex and three-dimensional structure, it is challenging to understand the anatomical relationship of the cortex, internal structures, arteries, and veins without appropriate adjuncts. Several injection agents—including the inks/dyes, latex, polyester, acrylic resins, phenol, polyethylene glycol, and phenoxyethanol—have been explored. Colored silicon injection protocols for the head and neck vessels’ perfusion have greatly aided the study of neuroanatomy and surgical planning. This report presents a colored silicone injection method in detail, and also highlights the technical shortcomings of the standard techniques and workarounds for common challenges during 35 human cadaveric head injections. The human cadaveric head preparation and the coloring of the head vessels are divided into decapitation, tissue fixation with 10% formalin, the placement of the Silastic tubing into the parent vessels, the cleaning of the vessels from clots, and the injection of the colored silicone into the vessels. We describe the technical details of the preparation, injection, and preservation of cadaveric heads, and outline common challenges during colored silicone injection, which include the dislocation of the Silastic tubing during the injection, the injection of the wrong or inappropriate colored silicone into the vessel, intracranial vessel perforation, the incomplete silicone casting of the vessel, and silicone leakage from small vessels in the neck. Solutions to these common challenges are provided. Ethyl alcohol fixed, colored human heads provided the long-term preservation of tissue, and improve the sample consistency and preservation for the teaching of neuroanatomy and surgical technique

    An Alternative Endoscopic Anterolateral Route to Meckel\u27s Cave: an Anatomic Feasibility Study Using a Sublabial Transmaxillary Approach

    No full text
    Objective: To describe an endoscopic anterolateral surgical route to the lateral portion of Meckel\u27s cave. Methods: A sublabial transmaxillary transpterygoid approach was performed in 6 cadaveric heads (12 sides). A craniectomy was drilled between the foramen rotundum (FR) and foramen ovale (FO) with defined borders. Extradural dissection was performed up to the V2–V3 junction of the trigeminal ganglion. The working space was analyzed using anatomic measurements. Results: The approach allowed for extradural dissection to the lateral aspect of Meckel\u27s cave and provided excellent exposure of V2, V3, and the V2–V3 junction at the gasserian ganglion. The mean distance between the FR and FO along the pterygoid process of the sphenoid bone was 21.3 ± 2.8 mm (range, 18–24.4 mm). The mean distance of V2 and V3 segments from their foramina to the gasserian ganglion junction was 12.0 ± 2.3 mm (range, 9.2–14.6 mm) and 15.2 ± 2.7 mm (range, 12.3–18.5 mm), respectively (6 sides). A potential working area (mean area, 89 mm2) is described. Its superior edge is from the FR to the V2–V3 junction at the gasserian ganglion, its inferior edge is from the FO to the V2–V3 junction at the gasserian ganglion, and its base is from the FO to the FR. The surgical anatomy of the infratemporal fossa, pterygopalatine fossa, and lateral Meckel\u27s cave is highlighted. Conclusions: An endoscopic anterolateral sublabial transmaxillary transpterygoid approach between the FR and FO avoids crossing critical neurovascular structures within the cavernous sinus and pterygopalatine fossa and can provide a safe surgical corridor for laterally based lesions in Meckel\u27s cave
    corecore