814 research outputs found

    Comparing the value of bioproducts from different stages of anaerobic membrane bioreactors

    Full text link
    Β© 2016 Elsevier Ltd The anaerobic digestion process in anaerobic membrane bioreactors is an effective way for waste management, energy sustainability and pollution control in the environment. This digestion process basically involves the production of volatile fatty acids and biohydrogen as intermediate products and methane as a final product. This paper compares the value of bioproducts from different stages of anaerobic membrane bioreactors through a thorough assessment. The value was assessed in terms of technical feasibility, economic assessment, environmental impact and impact on society. Even though the current research objective is more inclined to optimize the production of methane, the intermediate products could also be considered as economically attractive and environment friendly options. Hence, this is the first review study to correlate the idea into an anaerobic membrane bioreactor which is expected to guide future research pathways regarding anaerobic process and its bioproducts

    A novel mechanical cleavage method for synthesizing few-layer graphenes

    Get PDF
    A novel method to synthesize few layer graphene from bulk graphite by mechanical cleavage is presented here. The method involves the use of an ultrasharp single crystal diamond wedge to cleave a highly ordered pyrolytic graphite sample to generate the graphene layers. Cleaving is aided by the use of ultrasonic oscillations along the wedge. Characterization of the obtained layers shows that the process is able to synthesize graphene layers with an area of a few micrometers. Application of oscillation enhances the quality of the layers produced with the layers having a reduced crystallite size as determined from the Raman spectrum. Interesting edge structures are observed that needs further investigation

    Methylation profiling of twenty promoter-CpG islands of genes which may contribute to hepatocellular carcinogenesis

    Get PDF
    BACKGROUND: Hepatocellular carcinoma (HCC) presents one of the major health threats in China today. A better understanding of the molecular genetics underlying malignant transformation of hepatocytes is critical to success in the battle against this disease. The methylation state of C5 of the cytosine in the CpG di-nucleotide that is enriched within or near the promoter region of over 50 % of the polymerase II genes has a drastic effect on transcription of these genes. Changes in the methylation profile of the promoters represent an alternative to genetic lesions as causative factors for the tumor-specific aberrant expression of the genes. METHODS: We have used the methylation specific PCR method in conjunction with DNA sequencing to assess the methylation state of the promoter CpG islands of twenty genes. Aberrant expression of these genes have been attributed to the abnormal methylation profile of the corresponding promoter CpG islands in human tumors. RESULTS: While the following sixteen genes remained the unmethylated in all tumor and normal tissues: CDH1, APAF1, hMLH1, BRCA1, hTERC, VHL, RARΞ², TIMP3, DAPK1, SURVIVIN, p14(ARF), RB1, p15(INK4b), APC, RASSF1c and PTEN, varying degrees of tumor specific hypermethylation were associated with the p16(INK4a ), RASSF1a, CASP8 and CDH13 genes. For instance, the p16(INK4a )was highly methylated in HCC (17/29, 58.6%) and less significantly methylated in non-cancerous tissue (4/29. 13.79%). The RASSF1a was fully methylated in all tumor tissues (29/29, 100%), and less frequently methylated in corresponding non-cancerous tissue (24/29, 82.75%). CONCLUSIONS: Furthermore, co-existence of methylated with unmethylated DNA in some cases suggested that both genetic and epigenetic (CpG methylation) mechanisms may act in concert to inactivate the p16(INK4a )and RASSF1a in HCC. Finally, we found a significant association of cirrhosis with hypermethylation of the p16(INK4a )and hypomethylation of the CDH13 genes. For the first time, the survey was carried out on such an extent that it would not only provide new insights into the molecular mechanisms underscoring the aberrant expression of the genes in this study in HCC, but also offer essential information required for a good methylation-based diagnosis of HCC

    Identification of RegIV as a Novel GLI1 Target Gene in Human Pancreatic Cancer

    Get PDF
    GLI1 is the key transcriptional factor in the Hedgehog signaling pathway in pancreatic cancer. RegIV is associated with regeneration, and cell growth, survival, adhesion and resistance to apoptosis. We aimed to study RegIV expression in pancreatic cancer and its relationship to GLI1.GLI1 and RegIV expression were evaluated in tumor tissue and adjacent normal tissues of pancreatic cancer patients and 5 pancreatic cancer cell lines by qRT-PCR, Western blot, and immunohistochemistry (IHC), and the correlation between them. The GLI1-shRNA lentiviral vector was constructed and transfected into PANC-1, and lentiviral vector containing the GLI1 expression sequence was constructed and transfected into BxPC-3. GLI1 and RegIV expression were evaluated by qRT-PCR and Western blot. Finally we demonstrated RegIV to be the target of GLI1 by chromatin immunoprecipitation (CHIP) and electrophoretic mobility shift assays (EMSA).The results of IHC and qRT-PCR showed that RegIV and GLI1 expression was higher in pancreatic cancer tissues versus adjacent normal tissues (p<0.001). RegIV expression correlated with GLI1 expression in these tissues (Rβ€Š=β€Š0.795, p<0.0001). These results were verified for protein (Rβ€Š=β€Š0.939, pβ€Š=β€Š0.018) and mRNA expression (Rβ€Š=β€Š0.959, pβ€Š=β€Š0.011) in 5 pancreatic cancer cell lines. RegIV mRNA and protein expression was decreased (94.7Β±0.3%, 84.1Β±0.5%; respectively) when GLI1 was knocked down (82.1Β±3.2%, 76.7Β±2.2%; respectively) by the RNAi technique. GLI1 overexpression in mRNA and protein level (924.5Β±5.3%, 362.1Β±3.5%; respectively) induced RegIV overexpression (729.1Β±4.3%, 339.0Β±3.7%; respectively). Moreover, CHIP and EMSA assays showed GLI1 protein bound to RegIV promotor regions (GATCATCCA) in pancreatic cancer cells.GLI1 promotes RegIV transcription by binding to the RegIV gene promoter in pancreatic cancer

    Puerarin Suppresses Invasion and Vascularization of Endometriosis Tissue Stimulated by 17Ξ²-Estradiol

    Get PDF
    BACKGROUND: Puerarin, a phytoestrogen with a weak estrogenic effect, binds to estrogen receptors, thereby competing with 17Ξ²-estradiol (E2) and producing an anti-estrogenic effect. This study was to investigate whether puerarin could suppress the invasion and vascularization of E2-stimulated endometriotic tissue. METHODOLOGY/PRINCIPAL FINDINGS: The endometriotic stromal cells (ESCs) were successfully established and their invasive ability under different treatments was assessed through a Transwell Assay. Simultaneously, matrix metallopeptidase 9 (MMP-9) and tissue inhibitor of metalloproteinase 1 (TIMP-1) were detected by western blotting. Vascularization of endometriotic tissues was observed by chicken chorioallantoic membrane (CAM) assay. The staining of MMP-9, intercellular adhesion molecule 1 (ICAM-1), TIMP-1, and vascular endothelial growth factor (VEGF) in grafted endometriotic tissues was examined using immunohistochemistry analysis. The purity of ESCs in isolated cells was >95%, as determined by the fluoroimmunoassay of vimentin. E2 (10(-8) mol/L) promoted the invasiveness of ESCs by increasing MMP-9 accumulation and decreasing TIMP-1 accumulation. Interestingly, puerarin (10(-9) mol/L) significantly reversed these effects (P<0.01). The CAM assay indicated that puerarin (10(-9) mol/L) also inhibited the angiopoiesis of endometriotic tissue stimulated by the E2 (10(-8) mol/L) treatment (P<0.05). Accordingly, immunohistochemistry showed that the accumulation of MMP-9, ICAM-1, and VEGF was reduced whereas that of TIMP-1 increased in the combination treatment group compared with the E2 treatment group. CONCLUSIONS/SIGNIFICANCE: This study demonstrated that puerarin could suppress the tissue invasion by ESCs and the vascularization of ectopic endometrial tissues stimulated by E2, suggesting that puerarin may be a potential drug for the treatment of endometriosis

    Targeting vascular endothelial growth factor receptor 2 and protein kinase d1 related pathways by a multiple kinase inhibitor in angiogenesis and inflammation related processes in vitro.

    Get PDF
    Emerging evidence suggests that the vascular endothelial growth factor receptor 2 (VEGFR2) and protein kinase D1 (PKD1) signaling axis plays a critical role in normal and pathological angiogenesis and inflammation related processes. Despite all efforts, the currently available therapeutic interventions are limited. Prior studies have also proved that a multiple target inhibitor can be more efficient compared to a single target one. Therefore, development of novel inflammatory pathway-specific inhibitors would be of great value. To test this possibility, we screened our molecular library using recombinant kinase assays and identified the previously described compound VCC251801 with strong inhibitory effect on both VEGFR2 and PKD1. We further analyzed the effect of VCC251801 in the endothelium-derived EA.hy926 cell line and in different inflammatory cell types. In EA.hy926 cells, VCC251801 potently inhibited the intracellular activation and signaling of VEGFR2 and PKD1 which inhibition eventually resulted in diminished cell proliferation. In this model, our compound was also an efficient inhibitor of in vitro angiogenesis by interfering with endothelial cell migration and tube formation processes. Our results from functional assays in inflammatory cellular models such as neutrophils and mast cells suggested an anti-inflammatory effect of VCC251801. The neutrophil study showed that VCC251801 specifically blocked the immobilized immune-complex and the adhesion dependent TNF-alpha -fibrinogen stimulated neutrophil activation. Furthermore, similar results were found in mast cell degranulation assay where VCC251801 caused significant reduction of mast cell response. In summary, we described a novel function of a multiple kinase inhibitor which strongly inhibits the VEGFR2-PKD1 signaling and might be a novel inhibitor of pathological inflammatory pathways

    Necdin, a Negative Growth Regulator, Is a Novel STAT3 Target Gene Down-Regulated in Human Cancer

    Get PDF
    Cytokine and growth factor signaling pathways involving STAT3 are frequently constitutively activated in many human primary tumors, and are known for the transcriptional role they play in controlling cell growth and cell cycle progression. However, the extent of STAT3's reach on transcriptional control of the genome as a whole remains an important question. We predicted that this persistent STAT3 signaling affects a wide variety of cellular functions, many of which still remain to be characterized. We took a broad approach to identify novel STAT3 regulated genes by examining changes in the genome-wide gene expression profile by microarray, using cells expressing constitutively-activated STAT3. Using computational analysis, we were able to define the gene expression profiles of cells containing activated STAT3 and identify candidate target genes with a wide range of biological functions. Among these genes we identified Necdin, a negative growth regulator, as a novel STAT3 target gene, whose expression is down-regulated at the mRNA and protein levels when STAT3 is constitutively active. This repression is STAT3 dependent, since inhibition of STAT3 using siRNA restores Necdin expression. A STAT3 DNA-binding site was identified in the Necdin promoter and both EMSA and chromatin immunoprecipitation confirm binding of STAT3 to this region. Necdin expression has previously been shown to be down-regulated in a melanoma and a drug-resistant ovarian cancer cell line. Further analysis of Necdin expression demonstrated repression in a STAT3-dependent manner in human melanoma, prostate and breast cancer cell lines. These results suggest that STAT3 coordinates expression of genes involved in multiple metabolic and biosynthetic pathways, integrating signals that lead to global transcriptional changes and oncogenesis. STAT3 may exert its oncogenic effect by up-regulating transcription of genes involved in promoting growth and proliferation, but also by down-regulating expression of negative regulators of the same cellular processes, such as Necdin

    Inhibition of IGF-1 Signalling Enhances the Apoptotic Effect of AS602868, an IKK2 Inhibitor, in Multiple Myeloma Cell Lines

    Get PDF
    Multiple myeloma (MM) is a B cell neoplasm characterized by bone marrow infiltration with malignant plasma cells. IGF-1 signalling has been explored as a therapeutic target in this disease. We analyzed the effect of the IKK2 inhibitor AS602868, in combination with a monoclonal antibody targeting IGF-1 receptor (anti-IGF-1R) in human MM cell lines. We found that anti-IGF-1R potentiated the apoptotic effect of AS602868 in LP1 and RPMI8226 MM cell lines which express high levels of IGF-1R. Anti-IGF-1R enhanced the inhibitory effect of AS602868 on NF-ΞΊB pathway signalling and potentiated the disruption of mitochondrial membrane potential caused by AS602868. These results support the role of IGF-1 signalling in MM and suggest that inhibition of this pathway could sensitize MM cells to NF-ΞΊB inhibitors
    • …
    corecore