3 research outputs found

    Interfacial Tension of the Lipid Membrane Formed from Phosphatidylcholine–Decanoic Acid and Phosphatidylcholine–Decylamine Systems

    Get PDF
    Interfacial tension has been determined for phosphatidylcholine (PC)–decanoic acid (DA) and PC–decylamine (DE) membranes. PC (lecithin), DA and DE were used in the experiments; the interfacial tension values of the pure components are 1.62 × 10−3, −2.38 × 10−2 and −3.88 × 10−2 N/m (hypothetical values for DA and DE), respectively. The 1:1 complexes were formed during formation of PC–DA and PC–DE membranes. The following parameters describing the complexes were determined: the surface concentrations of the lipid membranes formed from these complexes, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}A3−1 A_{3}^{ - 1} \end{document}; the interfacial tensions of such membranes, γ3; and the stability constants of these complexes, K

    Biophysical Characterization and Membrane Interaction of the Two Fusion Loops of Glycoprotein B from Herpes Simplex Type I Virus

    Get PDF
    The molecular mechanism of entry of herpesviruses requires a multicomponent fusion system. Cell invasion by Herpes simplex virus (HSV) requires four virally encoded glycoproteins: namely gD, gB and gH/gL. The role of gB has remained elusive until recently when the crystal structure of HSV-1 gB became available and the fusion potential of gB was clearly demonstrated. Although much information on gB structure/function relationship has been gathered in recent years, the elucidation of the nature of the fine interactions between gB fusion loops and the membrane bilayer may help to understand the precise molecular mechanism behind herpesvirus-host cell membrane fusion. Here, we report the first biophysical study on the two fusion peptides of gB, with a particular focus on the effects determined by both peptides on lipid bilayers of various compositions. The two fusion loops constitute a structural subdomain wherein key hydrophobic amino acids form a ridge that is supported on both sides by charged residues. When used together the two fusion loops have the ability to significantly destabilize the target membrane bilayer, notwithstanding their low bilayer penetration when used separately. These data support the model of gB fusion loops insertion into cholesterol enriched membranes
    corecore