19 research outputs found

    Nano-motion Dynamics are Determined by Surface-Tethered Selectin Mechanokinetics and Bond Formation

    Get PDF
    The interaction of proteins at cellular interfaces is critical for many biological processes, from intercellular signaling to cell adhesion. For example, the selectin family of adhesion receptors plays a critical role in trafficking during inflammation and immunosurveillance. Quantitative measurements of binding rates between surface-constrained proteins elicit insight into how molecular structural details and post-translational modifications contribute to function. However, nano-scale transport effects can obfuscate measurements in experimental assays. We constructed a biophysical simulation of the motion of a rigid microsphere coated with biomolecular adhesion receptors in shearing flow undergoing thermal motion. The simulation enabled in silico investigation of the effects of kinetic force dependence, molecular deformation, grouping adhesion receptors into clusters, surface-constrained bond formation, and nano-scale vertical transport on outputs that directly map to observable motions. Simulations recreated the jerky, discrete stop-and-go motions observed in P-selectin/PSGL-1 microbead assays with physiologic ligand densities. Motion statistics tied detailed simulated motion data to experimentally reported quantities. New deductions about biomolecular function for P-selectin/PSGL-1 interactions were made. Distributing adhesive forces among P-selectin/PSGL-1 molecules closely grouped in clusters was necessary to achieve bond lifetimes observed in microbead assays. Initial, capturing bond formation effectively occurred across the entire molecular contour length. However, subsequent rebinding events were enhanced by the reduced separation distance following the initial capture. The result demonstrates that vertical transport can contribute to an enhancement in the apparent bond formation rate. A detailed analysis of in silico motions prompted the proposition of wobble autocorrelation as an indicator of two-dimensional function. Insight into two-dimensional bond formation gained from flow cell assays might therefore be important to understand processes involving extended cellular interactions, such as immunological synapse formation. A biologically informative in silico system was created with minimal, high-confidence inputs. Incorporating random effects in surface separation through thermal motion enabled new deductions of the effects of surface-constrained biomolecular function. Important molecular information is embedded in the patterns and statistics of motion

    Asymmetric Effect of Mechanical Stress on the Forward and Reverse Reaction Catalyzed by an Enzyme

    Get PDF
    The concept of modulating enzymatic activity by exerting a mechanical stress on the enzyme has been established in previous work. Mechanical perturbation is also a tool for probing conformational motion accompanying the enzymatic cycle. Here we report measurements of the forward and reverse kinetics of the enzyme Guanylate Kinase from yeast (Saccharomyces cerevisiae). The enzyme is held in a state of stress using the DNA spring method. The observation that mechanical stress has different effects on the forward and reverse reaction kinetics suggests that forward and reverse reactions follow different paths, on average, in the enzyme's conformational space. Comparing the kinetics of the stressed and unstressed enzyme we also show that the maximum speed of the enzyme is comparable to the predictions of the relaxation model of enzyme action, where we use the independently determined dissipation coefficient gamma approximate to 10(-1) g/s for the enzyme's conformational motion. The present experiments provide a mean to explore enzyme kinetics beyond the static energy landscape picture of transition state theory

    Single molecule and multiple bond characterization of catch bond associated cytoadhesion in malaria

    Get PDF
    The adhesion of malaria infected red blood cells (iRBCs) to host endothelial receptors in the microvasculature, or cytoadhesion, is associated with severe disease pathology such as multiple organ failure and cerebral malaria. Malaria iRBCs have been shown to bind to several receptors, of which intercellular adhesion molecule 1 (ICAM-1) upregulation in brain microvasculature is the only one correlated to cerebral malaria. We utilize a biophysical approach to study the interactions between iRBCs and ICAM-1. At the single molecule level, force spectroscopy experiments reveal that ICAM-1 forms catch bond interactions with Plasmodium falciparum parasite iRBCs. Flow experiments are subsequently conducted to understand multiple bond behavior. Using a robust model that smoothly transitions between our single and multiple bond results, we conclusively demonstrate that the catch bond behavior persists even under flow conditions. The parameters extracted from these experimental results revealed that the rate of association of iRBC-ICAM-1 bonds are ten times lower than iRBC-CD36 (cluster of differentiation 36), a receptor that shows no upregulation in the brains of cerebral malaria patients. Yet, the dissociation rates are nearly the same for both iRBC-receptor interactions. Thus, our results suggest that ICAM-1 may not be the sole mediator responsible for cytoadhesion in the brain
    corecore