391 research outputs found

    Neutral and ionic dopants in helium clusters: interaction forces for the Li2(a3Σu+)−HeLi_2(a^3\Sigma_u^+)-He and Li2+(X2Σg+)−HeLi_2^+(X^2\Sigma_g^+)-He

    Full text link
    The potential energy surface (PES) describing the interactions between Li2(1ÎŁu+)\mathrm{Li_{2}(^{1}\Sigma_{u}^{+})} and 4He\mathrm{^{4}He} and an extensive study of the energies and structures of a set of small clusters, Li2(He)n\mathrm{Li_{2}(He)_{n}}, have been presented by us in a previous series of publications [1-3]. In the present work we want to extend the same analysis to the case of the excited Li2(a3ÎŁu+)\mathrm{Li_{2}}(a^{3}\Sigma_{u}^{+}) and of the ionized Li2+(X2ÎŁg+)_{2}^{+}(X^{2}\Sigma_{g}^{+}) moiety. We thus show here calculated interaction potentials for the two title systems and the corresponding fitting of the computed points. For both surfaces the MP4 method with cc-pV5Z basis sets has been used to generate an extensive range of radial/angular coordinates of the two dimensional PES's which describe rigid rotor molecular dopants interacting with one He partner

    Bosonic Helium droplets with cationic impurities: onset of electrostriction and snowball effects from quantum calculations

    Get PDF
    Variational MonteCarlo and Diffusion MonteCarlo calculations have been carried out for cations like Li+^+, Na+^+ and K+^+ as dopants of small helium clusters over a range of cluster sizes up to about 12 solvent atoms. The interaction has been modelled through a sum-of-potential picture that disregards higher order effects beyond atom-atom and atom-ion contributions. The latter were obtained from highly correlated ab-initio calculations over a broad range of interatomic distances. This study focuses on two of the most striking features of the microsolvation in a quantum solvent of a cationic dopant: electrostriction and snowball effects. They are here discussed in detail and in relation with the nanoscopic properties of the interaction forces at play within a fully quantum picture of the clusters features

    Algebraic approach to quantum field theory on non-globally-hyperbolic spacetimes

    Get PDF
    The mathematical formalism for linear quantum field theory on curved spacetime depends in an essential way on the assumption of global hyperbolicity. Physically, what lie at the foundation of any formalism for quantization in curved spacetime are the canonical commutation relations, imposed on the field operators evaluated at a global Cauchy surface. In the algebraic formulation of linear quantum field theory, the canonical commutation relations are restated in terms of a well-defined symplectic structure on the space of smooth solutions, and the local field algebra is constructed as the Weyl algebra associated to this symplectic vector space. When spacetime is not globally hyperbolic, e.g. when it contains naked singularities or closed timelike curves, a global Cauchy surface does not exist, and there is no obvious way to formulate the canonical commutation relations, hence no obvious way to construct the field algebra. In a paper submitted elsewhere, we report on a generalization of the algebraic framework for quantum field theory to arbitrary topological spaces which do not necessarily have a spacetime metric defined on them at the outset. Taking this generalization as a starting point, in this paper we give a prescription for constructing the field algebra of a (massless or massive) Klein-Gordon field on an arbitrary background spacetime. When spacetime is globally hyperbolic, the theory defined by our construction coincides with the ordinary Klein-Gordon field theory on aComment: 21 pages, UCSBTH-92-4

    A remark on kinks and time machines

    Get PDF
    We describe an elementary proof that a manifold with the topology of the Politzer time machine does not admit a nonsingular, asymptotically flat Lorentz metric.Comment: 4 page

    The Effect of Sources on the Inner Horizon of Black Holes

    Full text link
    Single pulse of null dust and colliding null dusts both transform a regular horizon into a space-like singularity in the space of colliding waves. The local isometry between such space-times and black holes extrapolates these results to the realm of black holes. However, inclusion of particular scalar fields instead of null dusts creates null singularities rather than space-like ones on the inner horizons of black holes.Comment: Final version to appear in PR

    The averaged null energy condition for general quantum field theories in two dimensions

    Full text link
    It is shown that the averaged null energy condition is fulfilled for a dense, translationally invariant set of vector states in any local quantum field theory in two-dimensional Minkowski spacetime whenever the theory has a mass gap and possesses an energy-momentum tensor. The latter is assumed to be a Wightman field which is local relative to the observables, generates locally the translations, is divergence-free, and energetically bounded. Thus the averaged null energy condition can be deduced from completely generic, standard assumptions for general quantum field theory in two-dimensional flat spacetime.Comment: LateX2e, 16 pages, 1 eps figur

    The Near-Linear Regime of Gravitational Waves in Numerical Relativity

    Get PDF
    We report on a systematic study of the dynamics of gravitational waves in full 3D numerical relativity. We find that there exists an interesting regime in the parameter space of the wave configurations: a near-linear regime in which the amplitude of the wave is low enough that one expects the geometric deviation from flat spacetime to be negligible, but nevertheless where nonlinearities can excite unstable modes of the Einstein evolution equations causing the metric functions to evolve out of control. The implications of this for numerical relativity are discussed.Comment: 10 pages, 2 postscript figures, revised tex

    From wormhole to time machine: Comments on Hawking's Chronology Protection Conjecture

    Get PDF
    The recent interest in ``time machines'' has been largely fueled by the apparent ease with which such systems may be formed in general relativity, given relatively benign initial conditions such as the existence of traversable wormholes or of infinite cosmic strings. This rather disturbing state of affairs has led Hawking to formulate his Chronology Protection Conjecture, whereby the formation of ``time machines'' is forbidden. This paper will use several simple examples to argue that the universe appears to exhibit a ``defense in depth'' strategy in this regard. For appropriate parameter regimes Casimir effects, wormhole disruption effects, and gravitational back reaction effects all contribute to the fight against time travel. Particular attention is paid to the role of the quantum gravity cutoff. For the class of model problems considered it is shown that the gravitational back reaction becomes large before the Planck scale quantum gravity cutoff is reached, thus supporting Hawking's conjecture.Comment: 43 pages,ReV_TeX,major revision

    Focusing and the Holographic Hypothesis

    Get PDF
    The ``screen mapping" introduced by Susskind to implement 't Hooft's holographic hypothesis is studied. For a single screen time, there are an infinite number of images of a black hole event horizon, almost all of which have smaller area on the screen than the horizon area. This is consistent with the focusing equation because of the existence of focal points. However, the {\it boundary} of the past (or future) of the screen obeys the area theorem, and so always gives an expanding map to the screen, as required by the holographic hypothesis. These considerations are illustrated with several axisymmetric static black hole spacetimes.Comment: 8 pages, plain latex, 5 figures included using psfi

    Neutrino current in a gravitational plane wave collision background

    Full text link
    The behaviour of a massless Dirac field on a general spacetime background representing two colliding gravitational plane waves is discussed in the Newman-Penrose formalism. The geometrical properties of the neutrino current are analysed and explicit results are given for the special Ferrari-Ibanez solution.Comment: 17 pages, 6 Postscript figures, accepted by International Journal of Modern Physics
    • 

    corecore