86 research outputs found
Diffusion Variational Autoencoder for Tackling Stochasticity in Multi-Step Regression Stock Price Prediction
Multi-step stock price prediction over a long-term horizon is crucial for
forecasting its volatility, allowing financial institutions to price and hedge
derivatives, and banks to quantify the risk in their trading books.
Additionally, most financial regulators also require a liquidity horizon of
several days for institutional investors to exit their risky assets, in order
to not materially affect market prices. However, the task of multi-step stock
price prediction is challenging, given the highly stochastic nature of stock
data. Current solutions to tackle this problem are mostly designed for
single-step, classification-based predictions, and are limited to low
representation expressiveness. The problem also gets progressively harder with
the introduction of the target price sequence, which also contains stochastic
noise and reduces generalizability at test-time. To tackle these issues, we
combine a deep hierarchical variational-autoencoder (VAE) and diffusion
probabilistic techniques to do seq2seq stock prediction through a stochastic
generative process. The hierarchical VAE allows us to learn the complex and
low-level latent variables for stock prediction, while the diffusion
probabilistic model trains the predictor to handle stock price stochasticity by
progressively adding random noise to the stock data. Our Diffusion-VAE (D-Va)
model is shown to outperform state-of-the-art solutions in terms of its
prediction accuracy and variance. More importantly, the multi-step outputs can
also allow us to form a stock portfolio over the prediction length. We
demonstrate the effectiveness of our model outputs in the portfolio investment
task through the Sharpe ratio metric and highlight the importance of dealing
with different types of prediction uncertainties.Comment: CIKM 202
Ultralow thermal conductivity of single crystalline porous silicon nanowires
Porous materials provide a large surface to volume ratio, thereby providing a
knob to alter fundamental properties in unprecedented ways. In thermal
transport, porous nanomaterials can reduce thermal conductivity by not only
enhancing phonon scattering from the boundaries of the pores and therefore
decreasing the phonon mean free path, but also by reducing the phonon group
velocity. Here we establish a structure-property relationship by measuring the
porosity and thermal conductivity of individual electrolessly etched single
crystalline silicon nanowires using a novel electron beam heating technique.
Such porous silicon nanowires exhibit extremely low diffusive thermal
conductivity (as low as 0.33 Wm-1K-1 at 300K for 43% porosity), even lower than
that of amorphous silicon. The origin of such ultralow thermal conductivity is
understood as a reduction in the phonon group velocity, experimentally verified
by measuring the Young modulus, as well as the smallest structural size ever
reported in crystalline Silicon (less than 5nm). Molecular dynamics simulations
support the observation of a drastic reduction in thermal conductivity of
silicon nanowires as a function of porosity. Such porous materials provide an
intriguing platform to tune phonon transport, which can be useful in the design
of functional materials towards electronics and nano-electromechanical systems
Observation of the Cabibbo-suppressed decay Xi_c+ -> p K- pi+
We report the first observation of the Cabibbo-suppressed charm baryon decay
Xi_c+ -> p K- pi+. We observe 150 +- 22 events for the signal. The data were
accumulated using the SELEX spectrometer during the 1996-1997 fixed target run
at Fermilab, chiefly from a 600 GeV/c Sigma- beam. The branching fractions of
the decay relative to the Cabibbo-favored Xi_c+ -> Sigma+ K- pi+ and Xi_c+ ->
X- pi+ pi+ are measured to be B(Xi_c+ -> p K- pi+)/B(Xi_c+ -> Sigma+ K- pi+) =
0.22 +- 0.06 +- 0.03 and B(Xi_c+ -> p K- pi+)/B(Xi_c+ -> X- pi+ pi+) = 0.20 +-
0.04 +- 0.02, respectively.Comment: 5 pages, RevTeX, 3 figures (postscript), Submitted to Phys. Rev. Let
First observation of a narrow charm-strange meson DsJ(2632) -> Ds eta and D0 K+
We report the first observation of a charm-strange meson DsJ(2632) at a mass
of 2632.6+/-1.6 MeV/c^2 in data from SELEX, the charm hadro-production
experiment E781 at Fermilab. This state is seen in two decay modes, Ds eta and
D0 K+. In the Ds eta decay mode we observe an excess of 49.3 events with a
significance of 7.2sigma at a mass of 2635.9+/-2.9 MeV/c^2. There is a
corresponding peak of 14 events with a significance of 5.3sigma at 2631.5+/-1.9
MeV/c^2 in the decay mode D0 K+. The decay width of this state is <17 MeV/c^2
at 90% confidence level. The relative branching ratio Gamma(D0K+)/Gamma(Dseta)
is 0.16+/-0.06. The mechanism which keeps this state narrow is unclear. Its
decay pattern is also unusual, being dominated by the Ds eta decay mode.Comment: 5 pages, 3 included eps figures. v2 as accepted for publication by
PR
First Observation of the Doubly Charmed Baryon Xi_cc^+
We observe a signal for the doubly charmed baryon Xi_cc^+ in the charged
decay mode Xi_cc^+ --> Lambda_c^+ K- pi+ in data from SELEX, the charm
hadro-production experiment at Fermilab. We observe an excess of 15.9 events
over an expected background of 6.1 +/- 0.5 events, a statistical significance
of 6.3sigma. The observed mass of this state is (3519 +/- 1) MeV/c^2. The
Gaussian mass width of this state is 3MeV/c^2, consistent with resolution; its
lifetime is less than 33fsec at 90% confidence.Comment: 5 pages, 3 figures, accepted for publication in Physical Review
Letter
First Measurement of pi e -> pi e gamma Pion Virtual Compton Scattering
Pion Virtual Compton Scattering (VCS) via the reaction pi e --> pi e gamma
was observed in the Fermilab E781 SELEX experiment. SELEX used a 600 GeV/c pi-
beam incident on target atomic electrons, detecting the incident pi- and the
final state pi-, electron and gamma. Theoretical predictions based on chiral
perturbation theory are incorporated into a Monte Carlo simulation of the
experiment and are compared to the data. The number of reconstructed events (9)
and their distribution with respect to the kinematic variables (for the
kinematic region studied) are in reasonable accord with the predictions. The
corresponding pi- VCS experimental cross section is sigma=38.8+-13 nb, in
agreement with the theoretical expectation sigma=34.7 nb.Comment: 10 pages, 12 figures, 4 tables, 25 references, SELEX home page is
http://fn781a.fnal.gov/, revised July 21, 2002 in response to journal referee
Comment
- …