16,010 research outputs found

    Fashion Conversation Data on Instagram

    Full text link
    The fashion industry is establishing its presence on a number of visual-centric social media like Instagram. This creates an interesting clash as fashion brands that have traditionally practiced highly creative and editorialized image marketing now have to engage with people on the platform that epitomizes impromptu, realtime conversation. What kinds of fashion images do brands and individuals share and what are the types of visual features that attract likes and comments? In this research, we take both quantitative and qualitative approaches to answer these questions. We analyze visual features of fashion posts first via manual tagging and then via training on convolutional neural networks. The classified images were examined across four types of fashion brands: mega couture, small couture, designers, and high street. We find that while product-only images make up the majority of fashion conversation in terms of volume, body snaps and face images that portray fashion items more naturally tend to receive a larger number of likes and comments by the audience. Our findings bring insights into building an automated tool for classifying or generating influential fashion information. We make our novel dataset of {24,752} labeled images on fashion conversations, containing visual and textual cues, available for the research community.Comment: 10 pages, 6 figures, This paper will be presented at ICWSM'1

    Evidence for a preformed Cooper pair model in the pseudogap spectra of a Ca10(Pt4As8)(Fe2As2)5 single crystal with a nodal superconducting gap

    Get PDF
    For high-Tc superconductors, clarifying the role and origin of the pseudogap is essential for understanding the pairing mechanism. Among the various models describing the pseudogap, the preformed Cooper pair model is a potential candidate. Therefore, we present experimental evidence for the preformed Cooper pair model by studying the pseudogap spectrum observed in the optical conductivity of a Ca10(Pt4As8)(Fe2As2)5 (Tc = 34.6 K) single crystal. We observed a clear pseudogap structure in the optical conductivity and observed its temperature dependence. In the superconducting (SC) state, one SC gap with a gap size of {\Delta} = 26 cm-1, a scattering rate of 1/{\tau} = 360 cm-1 and a low-frequency extra Drude component were observed. Spectral weight analysis revealed that the SC gap and pseudogap are formed from the same Drude band. This means that the pseudogap is a gap structure observed as a result of a continuous temperature evolution of the SC gap observed below Tc. This provides clear experimental evidence for the preformed Cooper pair model.Comment: 15 pages, 4 figure

    Spin cluster operator theory for the Kagome lattice antiferromagnet

    Full text link
    The spin-1/2 quantum antiferromagnet on the Kagome lattice provides a quintessential example in the strongly correlated electron physics where both effects of geometric frustration and quantum fluctuation are pushed to their limit. Among possible non-magnetic ground states, the valence bond solid (VBS) with a 36-site unit cell is one of the most promising candidates. A natural theoretical framework for the analysis of such VBS order is to consider quantum states on a bond connecting the nearest-neighboring sites as fundamental quantum modes of the system and treat them as effectively independent "bond particles." While correctly describing the VBS order in the ground state, this approach, known as the bond operator theory, significantly overestimates the lowest spin excitation energy. To overcome this problem, we take a next logical step in this paper to improve the bond operator theory and consider extended spin clusters as fundamental building blocks of the system. Depending on two possible configurations of the VBS order, various spin clusters are considered: (i) in the VBS order with staggered hexagonal resonance, we consider one spin cluster for a David star and two spin clusters with each composed of a perfect hexagon and three attached dimers, and (ii) in the VBS order with uniform hexagonal resonance, one spin cluster composed of a David star and three attached dimers. It is shown that the majority of low-energy spin excitations are nearly or perfectly flat in energy. With most of its weight coming from the David star, the lowest spin excitation has a gap much lower than the previous value obtained by the bond operator theory, narrowing the difference against exact diagonalization results.Comment: 24 pages, 10 figures, 6 table

    Internal Peace in Life

    Get PDF
    The design, Internal Peace in Life, consisting of sleeveless top and high waist skirt, reflects designers’ current life journey with challenge, hope, and wish. This piece is unique in terms of application of Korean traditional clothing, called Hanbok, into contemporary apparel design, simple pattern development using geometric shapes, and the visual experimentation of relationships between 2D shape and the evolving 3D structures. This design also presents the delicacy and beauty of hand overcasting and opens a new way to integrate 3D printed objects into wearable fashion products considering wearers’ functionality

    Multi-label Few-shot ICD Coding as Autoregressive Generation with Prompt

    Full text link
    Automatic International Classification of Diseases (ICD) coding aims to assign multiple ICD codes to a medical note with an average of 3,000+ tokens. This task is challenging due to the high-dimensional space of multi-label assignment (155,000+ ICD code candidates) and the long-tail challenge - Many ICD codes are infrequently assigned yet infrequent ICD codes are important clinically. This study addresses the long-tail challenge by transforming this multi-label classification task into an autoregressive generation task. Specifically, we first introduce a novel pretraining objective to generate free text diagnoses and procedure using the SOAP structure, the medical logic physicians use for note documentation. Second, instead of directly predicting the high dimensional space of ICD codes, our model generates the lower dimension of text descriptions, which then infer ICD codes. Third, we designed a novel prompt template for multi-label classification. We evaluate our Generation with Prompt model with the benchmark of all code assignment (MIMIC-III-full) and few shot ICD code assignment evaluation benchmark (MIMIC-III-few). Experiments on MIMIC-III-few show that our model performs with a marco F1 30.2, which substantially outperforms the previous MIMIC-III-full SOTA model (marco F1 4.3) and the model specifically designed for few/zero shot setting (marco F1 18.7). Finally, we design a novel ensemble learner, a cross attention reranker with prompts, to integrate previous SOTA and our best few-shot coding predictions. Experiments on MIMIC-III-full show that our ensemble learner substantially improves both macro and micro F1, from 10.4 to 14.6 and from 58.2 to 59.1, respectively.Comment: To be appear in AAAI202

    Deciphering The Seemingly Counter Intuitive Impact Of Firm Innovation On Stock Returns In The Electronics Sector

    Get PDF
    This paper investigates the impact of firms’ innovative activities on stock returns for firms in the electronics sector. The regression analysis provided counter intuitive result that exploitation and exploration are not significant in explaining stock returns. However, further analysis on firm size revealed that innovation have statistically significant explanatory power in the stock returns of relatively large firms, and the effect was negative and positive for exploitation and exploration, respectively. This is consistent with general expectations. The result implies that equity investors may believe that innovation is important for relatively larger firms only

    Reconstruction of plasma density profiles by measuring spectra of radiation emitted from oscillating plasma dipoles

    Get PDF
    We suggest a new method for characterising non-uniform density distributions of plasma by measuring the spectra of radiation emitted from a localised plasma dipole oscillator excited by colliding electromagnetic pulses. The density distribution can be determined by scanning the collision point in space. Two-dimensional particle-in-cell simulations demonstrate the reconstruction of linear and nonlinear density profiles corresponding to laser-produced plasma. The method can be applied to a wide range of plasma, including fusion and low temperature plasmas. It overcomes many of the disadvantages of existing methods that only yield average densities along the path of probe pulses, such as interferometry and spectroscopy

    Structural Basis for Asymmetric Conductance of the Influenza M2 Proton Channel Investigated by Solid-State NMR Spectroscopy

    Get PDF
    The influenza M2 protein forms an acid-activated proton channel that is essential for virus replication. The transmembrane H37 selects for protons under low external pH while W41 ensures proton conduction only from the N terminus to the C terminus and prevents reverse current under low internal pH. Here, we address the molecular basis for this asymmetric conduction by investigating the structure and dynamics of a mutant channel, W41F, which permits reverse current under low internal pH. Solid-state NMR experiments show that W41F M2 retains the pH-dependent α-helical conformations and tetrameric structure of the wild-type (WT) channel but has significantly altered protonation and tautomeric equilibria at H37. At high pH, the H37 structure is shifted toward the π tautomer and less cationic tetrads, consistent with faster forward deprotonation to the C terminus. At low pH, the mutant channel contains more cationic tetrads than the WT channel, consistent with faster reverse protonation from the C terminus.15N NMR spectra allow the extraction of four H37 pKas and show that the pKas are more clustered in the mutant channel compared to WT M2. Moreover, binding of the antiviral drug, amantadine, at the N-terminal pore at low pH did not convert all histidines to the neutral state, as seen in WT M2, but left half of all histidines cationic, unambiguously demonstrating C-terminal protonation of H37 in the mutant. These results indicate that asymmetric conduction in WT M2 is due to W41 inhibition of C-terminal acid activation by H37. When Trp is replaced by Phe, protons can be transferred to H37 bidirectionally with distinct rate constants. Keywords: magic-angle-spinning NMR; tautomeric equilibrium; proton dissociation equilibrium; ion channels; gatingNational Institutes of Health (U.S.) (Grant GM088204
    corecore