5 research outputs found

    Modeling infection risk and energy use of upper-room Ultraviolet Germicidal Irradiation systems in multi-room environments

    Get PDF
    The effectiveness of ultraviolet irradiation at inactivating airborne pathogens is well proven, and the technology is also commonly promoted as an energy-efficient way of reducing infection risk in comparison to increasing ventilation. However, determining how and where to apply upper-room Ultraviolet Germicidal Irradiation devices for the greatest benefit is still poorly understood. This article links multi-zone infection risk models with energy calculations to assess the potential impact of a Ultraviolet Germicidal Irradiation installation across a series of inter-connected spaces, such as a hospital ward. A first-order decay model of ultraviolet inactivation is coupled with a room air model to simulate patient room and whole-ward level disinfection under different mixing and ultraviolet field conditions. Steady-state computation of quanta-concentrations is applied to the Wells–Riley equation to predict likely infection rates. Simulation of a hypothetical ward demonstrates the relative influence of different design factors for susceptible patients co-located with an infectious source or in nearby rooms. In each case, energy requirements are calculated and compared to achieving the same level of infection risk through improved ventilation. Ultraviolet devices are seen to be most effective where they are located close to the infectious source; however, when the location of the infectious source is not known, locating devices in patient rooms is likely to be more effective than installing them in connecting corridor or communal zones. Results show an ultraviolet system may be an energy-efficient solution to controlling airborne infection, particularly in semi-open hospital environments, and considering the whole ward rather than just a single room at the design stage is likely to lead to a more robust solution
    corecore