2,561 research outputs found

    A first impression of the future

    Get PDF
    Funding Information: This research was supported by Australian Research Council (ARC) Discovery Early Career Research Award DE190101043 (to C.S.), an Experimental Psychology Society Small Research grant (to C.S.) and an ARC Discovery Award DP170104602 (to C.S. and A.Y). ACKNOWLEDGMENTS We thank Dr Jemma Collova from the School of Indigenous Studies, University of Western Australia, for helpful feedback on a draft.Peer reviewedPublisher PD

    Signatures of non-gaussianity in the isocurvature modes of primordial black hole dark matter

    Get PDF
    Primordial black holes (PBHs) are black holes which may have formed very early on during the radiation dominated era in the early universe. We present here a method by which the large scale perturbations in the density of primordial black holes may be used to place tight constraints on non-gaussianity if PBHs account for dark matter (DM). The presence of local-type non-gaussianity is known to have a significant effect on the abundance of primordial black holes, and modal coupling from the observed CMB scale modes can significantly alter the number density of PBHs that form within different regions of the universe, which appear as DM isocurvature modes. Using the recent \emph{Planck} constraints on isocurvature perturbations, we show that PBHs are excluded as DM candidates for even very small local-type non-gaussianity, fNL0.001|f_{NL}|\approx0.001 and remarkably the constraint on gNLg_{NL} is almost as strong. Even small non-gaussianity is excluded if DM is composed of PBHs. If local non-Gaussianity is ever detected on CMB scales, the constraints on the fraction of the universe collapsing into PBHs (which are massive enough to have not yet evaporated) will become much tighter.Comment: 23 pages, 11 figures. V2: minor corrections and changes, matches published versio

    Understanding person acquisition using an interactive activation and competition network

    No full text
    Face perception is one of the most developed visual skills that humans display, and recent work has attempted to examine the mechanisms involved in face perception through noting how neural networks achieve the same performance. The purpose of the present paper is to extend this approach to look not just at human face recognition, but also at human face acquisition. Experiment 1 presents empirical data to describe the acquisition over time of appropriate representations for newly encountered faces. These results are compared with those of Simulation 1, in which a modified IAC network capable of modelling the acquisition process is generated. Experiment 2 and Simulation 2 explore the mechanisms of learning further, and it is demonstrated that the acquisition of a set of associated new facts is easier than the acquisition of individual facts in isolation of one another. This is explained in terms of the advantage gained from additional inputs and mutual reinforcement of developing links within an interactive neural network system. <br/

    Spin resonance of 2D electrons in a large-area silicon MOSFET

    Full text link
    We report electron spin resonance (ESR) measurements on a large-area silicon MOSFET. An ESR signal at g-factor 1.9999(1), and with a linewidth of 0.6 G, is observed and found to arise from two-dimensional (2D) electrons at the Si/SiO2 interface. The signal and its intensity show a pronounced dependence on applied gate voltage. At gate voltages below the threshold of the MOSFET, the signal is from weakly confined, isolated electrons as evidenced by the Curie-like temperature dependence of its intensity. The situation above threshold appears more complicated. These large-area MOSFETs provide the capability to controllably tune from insulating to conducting regimes by adjusting the gate voltage while monitoring the state of the 2D electron spins spectroscopically.Comment: 7 pages, 3 figures, submitted to Physica E special edition for EPS2DS-1

    Calculating the mass fraction of primordial black holes

    Get PDF
    We reinspect the calculation for the mass fraction of primordial black holes (PBHs) which are formed from primordial perturbations, finding that performing the calculation using the comoving curvature perturbation c in the standard way vastly overestimates the number of PBHs, by many orders of magnitude. This is because PBHs form shortly after horizon entry, meaning modes significantly larger than the PBH are unobservable and should not affect whether a PBH forms or not - this important effect is not taken into account by smoothing the distribution in the standard fashion. We discuss alternative methods and argue that the density contrast, Δ, should be used instead as super-horizon modes are damped by a factor k2. We make a comparison between using a Press-Schechter approach and peaks theory, finding that the two are in close agreement in the region of interest. We also investigate the effect of varying the spectral index, and the running of the spectral index, on the abundance of primordial black holes

    Priority-based initial access for URLLC traffic in massive IoT networks: Schemes and performance analysis

    Get PDF
    At a density of one million devices per square kilometer, the10’s of billions of devices, objects, and machines that form a massive Internet of things (mIoT) require ubiquitous connectivity. Among a massive number of IoT devices, a portion of them require ultra-reliable low latency communication (URLLC) provided via fifth generation (5G) networks, bringing many new challenges due to the stringent service requirements. Albeit a surge of research efforts on URLLC and mIoT, access mechanisms which include both URLLC and massive machine type communications (mMTC) have not yet been investigated in-depth. In this paper, we propose three novel schemes to facilitate priority-based initial access for mIoT/mMTC devices that require URLLC services while also considering the requirements of other mIoT/mMTC devices. Based on a long term evolution-advanced (LTEA) or 5G new radio frame structure, the proposed schemes enable device grouping based on device vicinity or/and their URLLC requirements and allocate dedicated preambles for grouped devices supported by flexible slot allocation for random access. These schemes are able not only to increase the reliability and minimize the delay of URLLC devices but also to improve the performance of all involved mIoT devices. Furthermore, we evaluate the performance of the proposed schemes through mathematical analysis as well as simulations and compare the results with the performance of both the legacy LTE-A based initial access scheme and a grant-free transmission scheme.acceptedVersio

    Web crippling design of cold-formed duplex stainless steel lipped channel-sections with web openings under end-one-flange loading condition

    Get PDF
    Cold-formed stainless steel sections are becoming more widely used in the residential and commercial sectors due to their high corrosion resistance and high strength-to-weight ratio. However, their susceptibility to web crippling at points of concentrated loading is well-known to be an important design issue. In addition, web openings are also become popular, as they improve ease of installation of services. This paper presents the results of an investigation into the effect of web crippling on cold-formed duplex stainless steel lipped channel-sections, having such openings, under the end-one-flange (EOF) loading condition. 728 non-linear elasto-plastic finite element analyses are undertaken, with web openings located either centred above the bearing plate or offset to bearing plate. The effect of the size of the web opening, length of bearing plate and location of the web opening is considered. Strength reduction factor equations are proposed, that can be used to take into account such openings in design

    Approaches to research donor evaluations : a review of the issues

    Get PDF
    Meeting: Research Donor's Group Meeting, 10-11 Dec. 1987, Canberra, A

    CABYR is essential for fibrous sheath integrity and progressive motility in mouse spermatozoa

    Full text link
    Ca<sup>2+</sup>-binding tyrosine-phosphorylation-regulated protein (CABYR) has been implicated in sperm physiological function in several in vitro studies. It has also been implicated as a potential cause of and diagnostic tool in asthenozoospermic human males. CABYR is known to be localized to the fibrous sheath, an accessory structure in the flagellar principal piece. Utilizing the CRISPR–Cas9 technology, we have knocked out this gene in mice to understand its role in male fertility. <i>Cabyr</i>-knockout male mice showed severe subfertility with a defect in sperm motility as well as a significant disorganization in the fibrous sheath. Further, abnormal configuration of doublet microtubules was observed in the Cabyr-knockout spermatozoa, suggesting that the fibrous sheath is important for the correct organization of the axoneme. Our results show that it is the role of CABYR in the formation of the fibrous sheath that is essential for male fertility
    corecore