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Abstract. Cold-formed stainless steel sections are becoming more widely used in the residential and commercial sectors due to their 

high corrosion resistance and high strength-to-weight ratio. However, their susceptibility to web crippling at points of concentrated 

loading is well-known to be an important design issue. In addition, web openings are also become popular, as they improve ease of 

installation of services. This paper presents the results of an investigation into the effect of web crippling on cold-formed duplex 

stainless steel lipped channel-sections, having such openings, under the end-one-flange (EOF) loading condition. 728 non-linear 

elasto-plastic finite element analyses are undertaken, with web openings located either centred above the bearing plate or offset to 

bearing plate. The effect of the size of the web opening, length of bearing plate and location of the web opening is considered. 

Strength reduction factor equations are proposed, that can be used to take into account such openings in design. 

1 INTRODUCTION 

Cold-formed stainless steel sections increasingly are been used in the construction industry, for both architectural as well as 

structural applications (Nethercot et al. [1], Theofanous and Gardner [2], Kiymaz and Seckin [3]) and the use of web openings in such 

sections is becoming increasingly popular (Lawson et. al. [4]). Such openings, however, result in the sections being more susceptible 

to web crippling as a form of localized buckling, especially under concentrated loads applied to the bearing flange in the vicinity of the 

openings.  

The authors have recently proposed strength reduction factor equations for the web crippling strength of cold-formed stainless 

steel lipped channel-sections with circular web openings under the one and two flange loadings (Yousefi et al. [5-9]). The equations 

covered three stainless steel grades: duplex grade EN 1.4462; austenitic grade EN 1.4404 and ferritic grade EN 1.4003. Other than 

Yousefi et al. [5-9] no previous research has considered the web crippling strength of cold-formed stainless steel lipped channel-

sections with circular web openings under either of the one or two-flange loading conditions. The work extended that of Lian et al. 

[10-11] considering cold-formed stainless steel instead of cold-formed carbon steel. Conducting a parametric study of 2,218 cold-

formed stainless steel lipped channel-sections with various dimensions and thicknesses, the strength reduction factor equations 

proposed by Lian et al. [10-11] were shown to be conservative by 2% for the duplex grade and around 9% for the austenitic and ferritic 

grades. 

 For cold-formed carbon steel with circular web openings, Lian et al. [10-11] have considered the end-one-flange (EOF) 

loading condition (see Figure 1). The work of Lian et al. [10-11] was a continuation of the work of Uzzaman et al. [12-15] who 

considered the two-flange loading condition. For cold-formed stainless steel lipped channel-sections without openings, only Krovink et 

al. [16] has considered the web crippling strength. Zhou and Young [17-20] have considered the web crippling strength of cold-formed 

stainless steel tubular sections; Keerthan and Mahendran [21] and Keerthan et al. [22] considered the web crippling strength of hollow 

flange channel beams. Research by Lawson et al. [4], while concerned with circular web openings, focussed on the bending strength of 

the sections and not on the web crippling strength under concentrated loads. 

This paper considers the web crippling strength of cold-formed stainless steel lipped channel-sections with web openings 

subjected to the end-one-flange (EOF) loading condition (see Figure 2) for the duplex EN 1.4462 grade, as part of the authors’ works 

on one and two flange loadings (Yousefi et al. [5-9]). Using the general purpose finite element program ABAQUS [23], 728 non-linear 
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elasto-plastic finite element analyses are undertaken, with web openings located either centred above the bearing plate or offset to 

bearing plate. The effect of the size of the web opening, length of bearing plate and location of the web opening is considered. Strength 

reduction factor equations are proposed, that can be used to take into account such openings in design. 

 

  
Figure 1: Experimental analysis of cold-formed steel channel sections under EOF loading condition 

 
                                                              (a)                                                                                                        (b)  

Figure 2: End-one-flange (EOF) loading condition; (a) With web openings centred above bearing plate, (b) With web openings offset from bearing 

plate  

2 EXPERIMENTAL INVESTIGATION AND FINITE ELEMENT MODELLING 

For cold-formed carbon steel, Lian et al. [10-11] recently conducted 74 end-one-flange (EOF) tests, in the laboratory, on 

lipped channel-sections with circular web openings under web crippling (see Figure 1). Figure 3 shows the definition of the symbols 

used to describe the dimensions of the cold-formed carbon steel lipped channel-sections considered in the test programme. The 

laboratory tests were used to validate a non-linear geometry elasto-plastic finite element model in ABAQUS [23], which was then used 

for a parametric study, from which design recommendations were proposed in the form of strength reduction factor equations, relating 

the loss of strength due to the web openings to the strength of the web without openings. The size of the circular web openings was 

varied in order to investigate the effect of the web opening size on the web crippling strength. Full details of both the laboratory tests 

and finite element models can be found in Lian et al. [10-11]. 

 

 

 
Figure 3: Definition of symbols 

 

 

The models have been coded such the nominal dimension of the model and the length of the bearing plate as well as the ratio of 

the diameter of the circular web openings to the depth of the flat portion of the webs (a/h) can be determined from the coding system. 

As an example, the label “142-N100-A0.2-FR” means the following. The first notation is the nominal depth of the models in 
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millimeters. The notation ''N100'' indicates the length of bearing plate in millimeters (i.e. 100 mm). The notation ''A0.2'' indicates the 

ratio of the diameter of the openings to the depth of the flat portion of the webs (a/h) and are one of 0.2, 0.4, 0.6 and 0.8 (i.e. A0.2 

means a/h = 0.2; A0.4 means a/h = 0.4 etc). Plain lipped channel-sections (i.e. without circular web openings) are denoted by ''A0''. 

The flange unfastened and fastened cases are identified as ''FR'' and ''FX'', respectively. Typical stress-strain curve for the duplex 

stainless steel material, was taken from Chen and Young [24]. Comparative hot-rolled steel stress strain curves can be found in Yousefi 

et al. [25] and Rezvani et al. [26]. 

 

Figure 4 compares the experimental and numerical load-displacement curves for a cold-formed carbon steel lipped channel-

section, 142×60×13-t1.3-N100-FR, covering the cases both with and without the circular web openings. As can be seen, there is good 

agreement between the failure loads of the tested specimens and the finite element results. For cold-formed stainless steel lipped 

channel-sections, the numerical failure loads with and without circular web openings were then determined for the duplex grade EN 

1.4462.  

These results were compared with the failure loads calculated in accordance with ASCE [27], NAS [28] and Eurocode-3 [29] 

(see Table 1). The failure loads predicted from the finite element model are similar to the standard codified failure loads of the 

sections. 

 

 

(a) Centred circular web opening for the case of flange unfastened to bearing plate 

 

 

(b) Offset circular web opening for the case of flange fastened to bearing plate 

Figure 4: Comparison of finite element results and experimental test results for 142×60×13-t1.3-N100 (Lian et al. [10-11]) 

 

 

 

 

 

 

A0-FEA A0-Test 

A0.4-FEA 

A0.4-FEA 
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Table 1: Comparison of numerical results with design strength for the case of flange fastened to the bearing plate without circular web opening 

Specimen Web 

slenderness 

Bearing 

length to 

thickness 

ratio 

Bearing 

length to web 

height ratio 

Inside bend 

radius to 

thickness 

ratio 

Failure 

load per 

web      

Web crippling strength per  

web predicted from current 

 design codes 

 

Comparison   

  h/t N/t N/h ri/t PFEA PNAS PASCE PEuro P/PNA

S  

P/PASC

E 

P/ PEuro 

      (kN) (kN) (kN)      

142-N100 114.01 81.3 0.71 3.9 
3.11 5.87 2.84 2.73 0.53 1.10 1.14 

142-N120 111.67 96 0.86 3.84 
3.23 5.95 2.86 2.83 0.54 1.13 1.14 

142-N150 112.64 120.97 1.07 3.87 
3.55 6.39 3.15 3.24 0.56 1.13 1.10 

202-N100 147.62 74.07 0.5 3.7 
3.27 6.69 3.31 3.13 0.49 0.99 1.04 

202-N120 147.68 88.89 0.6 3.7 
3.52 7.17 3.59 3.51 0.49 0.98 1.00 

202-N150 147.72 111.11 0.75 3.7 
3.89 7.82 4.01 4.08 0.50 0.97 0.95 

302-N100 157.69 52.63 0.33 2.63 
5.80 11.14 6.02 5.53 0.52 0.96 1.05 

302-N120 157.13 63.16 0.4 2.63 
6.21 11.90 6.56 6.01 0.52 0.95 1.03 

302-N150 157.67 78.95 0.5 2.63 
6.85 12.93 7.18 6.87 0.53 0.95 1.00 

Mean, Pm 
      

  0.52 1.02 1.05 

Coefficient of variation        0.05 0.08 0.06 

 

3 PARAMETRIC STUDY FOR DUPLEX STAINLESS STEEL GRADE 

In this study, in order to investigate the effect of circular web openings on the web crippling strength of cold-formed stainless 

steel lipped channel-sections, a total of 728 finite element models of lipped channel-sections with various dimensions and thicknesses 

were considered for the duplex EN1.4462 stainless steel grade. Table 2 shows the web crippling strengths determined from finite 

element analyses for the duplex EN 1.4462 stainless steel grade. The web crippling strengths for sections with circular web openings 

were divided by that for sections without web openings and considered as the strength reduction factor (R). The effects of parameters 

such as the web opening diameters (a), length of bearing plates (N) and location of web openings in the web (x) on web crippling 

strength is shown in Figures 5-7 for the C142 specimen. As can be seen, the reduction in strength increases as the parameter a/h 

increases. The reduction in strength of the flange unfastened case is more than fastened case and the reduction in strength increases as 

the section becomes thinner. Also, it can be seen that the reduction in strength is more sensitive to the horizontal distance of the web 

opening to the bearing plate and the reduction in strength is slightly less for the flange fastened case, compared with the flange 

unfastened case. 
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Table 2: Web crippling strengths of duplex stainless steel sections predicted from finite element analysis  

a: a/h for centred circular web opening case 

Specimen Thickness Unfastened FEA load per web, PFEA 

 

    Fastened FEA load per web, PFEA 

 
t A(0) A(0.2) A(0.4) A(0.6) A(0.8) A(0) A(0.2) A(0.4) A(0.6) A(0.8) 

  (mm) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) 

142-N100-FR 1.27 2.45 2.37 2.05 1.66 - 3.68 3.55 3.07 2.67 - 

142-N100-FR 4.00 21.99 21.79 20.74 20.32 - 27.98 27.94 27.74 25.84 - 

142-N100-FR 6.00 31.36 31.33 31.16 30.27 - 34.88 34.84 34.66 33.75 - 

142-N120-FR 1.27 2.71 2.64 2.29 1.91 - 3.77 3.63 3.23 2.82 - 

142-N120-FR 4.00 20.98 20.92 20.89 20.06 - 27.50 27.47 27.33 26.70 - 

142-N120-FR 6.00 30.87 30.74 30.59 30.09 - 34.35 34.32 34.16 33.58 - 

142-N150-FR 1.28 2.89 2.80 2.47 2.12 1.76 4.10 3.96 3.58 3.18 2.74 

142-N150-FR 4.00 20.93 20.85 20.50 19.96 17.25 26.69 26.67 26.57 26.13 22.95 

142-N150-FR 6.00 29.89 29.86 29.73 29.35 27.24 33.75 33.72 33.57 33.20 29.84 

202-N100-FR 1.39 2.45 2.38 2.05 - - 3.72 3.57 3.06 - - 

202-N100-FR 4.00 22.46 21.89 18.06 - - 30.35 30.12 26.59 - - 

202-N100-FR 6.00 32.57 32.51 31.97 - - 35.86 35.79 35.46 - - 

202-N120-FR 1.39 2.57 2.49 2.20 1.73 - 3.97 3.80 3.31 2.78 - 

202-N120-FR 4.00 22.39 22.36 19.47 14.64 - 30.30 30.18 29.30 22.41 - 

202-N120-FR 6.00 32.32 32.27 32.00 29.37 - 35.59 35.53 35.28 33.46 - 

202-N150-FR 1.39 2.70 2.62 2.34 1.92 - 4.31 4.13 3.68 3.08 - 

202-N150-FR 4.00 22.15 21.73 21.01 16.68 - 29.76 29.68 29.32 27.55 - 

202-N150-FR 6.00 31.75 31.70 31.50 30.65 - 35.19 35.14 34.92 34.17 - 

302-N100-FR 1.98 4.62 4.47 - - - 6.54 6.29 - - - 

302-N100-FR 4.00 21.45 20.16 - - - 30.04 28.95 - - - 

302-N100-FR 6.00 32.97 32.78 - - - 36.34 36.23 - - - 

302-N120-FR 1.98 4.78 4.61 3.82 - - 6.93 6.63 5.36 - - 

302-N120-FR 4.00 22.24 20.91 16.82 - - 30.90 30.13 24.93 - - 

302-N120-FR 6.00 32.90 32.78 31.39 - - 36.17 36.09 35.36 - - 

302-N150-FR 1.99 5.02 4.89 4.00 - - 7.55 7.20 5.94 - - 

302-N150-FR 4.00 23.06 21.87 17.95 - - 31.16 30.78 27.71 - - 

302-N150-FR 6.00 32.67 32.58 31.94 - - 35.99 35.92 35.57 - - 

 

 

 

 

 



 

 
b: a/h for offset circular web opening case 

Specimen Thickness Unfastened FEA load per web, PFEA Fastened FEA load per web, PFEA 

 
T A(0) A(0.2) A(0.4) A(0.6) A(0) A(0.2) A(0.4) A(0.6) 

  (mm) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) 

142-N100-FR 1.27 2.45 2.45 2.40 2.32 3.68 3.66 3.58 3.47 

142-N100-FR 4.00 21.97 21.93 21.72 19.95 27.98 27.94 27.62 24.44 

142-N100-FR 6.00 31.37 31.31 30.99 28.81 34.88 34.76 34.48 32.60 

142-N120-FR 1.27 2.73 2.72 2.68 2.60 3.77 3.76 3.69 3.59 

142-N120-FR 4.00 21.72 21.68 21.46 19.51 27.50 27.46 27.11 23.87 

142-N120-FR 6.00 30.78 30.71 30.38 28.07 34.35 34.29 33.95 32.02 

142-N150-FR 1.28 2.90 2.90 2.87 2.77 4.10 4.08 4.03 3.94 

142-N150-FR 4.00 20.94 20.90 20.65 18.53 26.69 26.66 26.23 24.41 

142-N150-FR 6.00 29.89 29.83 29.46 26.90 33.75 33.68 33.34 31.28 

202-N100-FR 1.39 2.45 2.42 2.32 2.14 3.72 3.71 3.62 3.41 

202-N100-FR 4.00 22.46 22.34 21.90 20.44 30.35 30.27 29.92 27.82 

202-N100-FR 6.00 32.57 32.48 32.09 30.75 35.86 35.76 35.36 34.06 

202-N120-FR 1.39 2.57 2.53 2.44 2.28 3.97 3.95 3.85 3.68 

202-N120-FR 4.00 22.39 22.28 21.86 20.71 30.30 30.23 29.86 26.11 

202-N120-FR 6.00 32.32 32.23 31.85 30.47 35.59 35.50 35.10 33.80 

202-N150-FR 1.39 2.70 2.67 2.57 2.44 4.31 4.29 4.19 4.06 

202-N150-FR 4.00 22.15 22.06 21.77 20.57 29.76 29.69 29.32 26.84 

202-N150-FR 6.00 31.75 31.66 31.29 29.80 35.19 35.10 34.71 33.39 

302-N100-FR 1.98 4.62 4.62 4.40 4.08 6.54 6.41 6.19 5.94 

302-N100-FR 2.00 21.45 21.22 20.65 19.82 30.04 29.93 29.56 28.62 

302-N100-FR 4.00 32.97 32.85 32.39 31.08 36.34 36.24 35.80 34.50 

302-N120-FR 1.98 4.78 4.78 4.57 4.30 6.93 6.81 6.63 6.41 

302-N120-FR 2.00 22.24 22.03 21.50 20.63 30.90 30.79 30.39 29.20 

302-N120-FR 4.00 32.90 32.79 32.33 31.00 36.17 36.07 35.64 34.33 

302-N150-FR 1.99 5.09 5.05 4.89 4.63 7.55 7.47 7.31 7.06 

302-N150-FR 2.00 23.06 22.90 22.39 21.38 31.16 31.05 30.63 29.30 

302-N150-FR 4.00 32.67 32.56 32.11 30.78 35.99 35.90 35.47 34.18 
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c: x/h for offset circular web opening case 

Specimen Thickness Unfastened FEA load per web, P(FEA) Fastened FEA load per web, PFEA 

 
t X(0) X(0.2) X(0.4) X(0.6) X(0) X(0.2) X(0.4) X(0.6) 

  (mm) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) 

142-N100-A0-FR 1.27 2.38 2.38 2.38 2.38 3.63 3.63 3.63 3.63 

142-N100-A0.2-FR 1.27 2.33 2.34 2.35 2.36 3.57 3.58 3.60 3.62 

142-N100-A0.4-FR 1.27 2.18 2.22 2.26 2.29 3.39 3.44 3.50 3.53 

142-N100-A0.6-FR 1.27 1.99 2.07 2.14 2.20 3.16 3.24 3.32 3.37 

142-N100-A0.8-FR 1.27 --- --- --- --- --- --- --- --- 

142-N120-A0-FR 1.27 2.68 2.68 2.68 2.68 3.74 3.74 3.74 3.74 

142-N120-A0.2-FR 1.27 2.63 2.64 2.65 2.63 3.68 3.69 3.71 3.73 

142-N120-A0.4-FR 1.27 2.39 2.43 2.47 2.39 3.51 3.56 3.61 3.63 

142-N120-A0.6-FR 1.27 2.22 2.29 2.36 2.22 3.29 3.37 3.43 3.47 

142-N120-A0.8-FR 1.27 --- --- --- --- --- --- --- --- 

142-N150-A0-FR 1.28 2.74 2.74 2.74 2.74 4.07 4.07 4.07 4.07 

142-N150-A0.2-FR 1.28 2.69 2.70 2.70 2.71 4.01 4.02 4.04 4.06 

142-N150-A0.4-FR 1.28 2.56 2.60 2.62 2.65 3.86 3.91 3.94 3.96 

142-N150-A0.6-FR 1.28 2.42 2.47 2.53 2.57 3.66 3.71 3.75 3.79 

142-N150-A0.8-FR 1.28 2.38 2.47 2.53 2.55 --- --- --- --- 

202-N100-A0-FR 1.39 2.26 2.26 2.26 2.26 3.72 3.72 3.72 3.72 

202-N100-A0.2-FR 1.39 2.21 2.22 2.22 2.37 3.63 3.64 3.68 3.71 

202-N100-A0.4-FR 1.39 2.05 2.17 2.23 2.26 3.45 3.54 3.55 3.61 

202-N100-A0.6-FR 1.39 1.81 1.86 1.92 1.98 3.08 3.21 3.33 3.38 

202-N120-A0-FR 1.39 2.38 2.38 2.38 2.38 3.96 3.96 3.96 3.96 

202-N120-A0.2-FR 1.39 2.28 2.28 2.29 2.42 3.67 3.71 3.93 3.96 

202-N120-A0.4-FR 1.39 2.16 2.19 2.21 2.37 3.65 3.74 3.80 3.85 

202-N120-A0.6-FR 1.39 1.92 2.07 2.07 2.22 3.39 3.49 3.56 3.61 

202-N150-A0-FR 1.45 2.51 2.51 2.51 2.51 4.33 4.33 4.33 4.33 

202-N150-A0.2-FR 1.45 2.46 2.47 2.47 2.60 4.26 4.29 4.32 4.34 

202-N150-A0.4-FR 1.45 2.30 2.32 2.35 2.50 4.08 4.15 4.17 4.19 

202-N150-A0.6-FR 1.45 2.11 2.19 2.25 2.37 3.80 3.88 3.93 4.01 

302-N100-A0-FR 1.98 4.05 4.05 4.05 4.05 6.52 6.52 6.52 6.52 

302-N100-A0.2-FR 1.98 3.95 3.97 4.01 4.05 6.35 6.49 6.50 6.54 

302-N120-A0-FR 1.96 4.21 4.21 4.21 4.21 6.90 6.90 6.90 6.90 

302-N120-A0.2-FR 1.96 4.14 4.18 4.22 4.23 6.71 6.78 6.85 6.89 

302-N120-A0.4-FR 1.96 3.83 3.97 4.04 4.05 6.45 6.60 6.65 6.67 

302-N120-A0.6-FR 1.96 3.38 3.61 3.72 3.78 --- --- --- --- 

302-N150-A0-FR 1.99 4.53 4.53 4.53 4.53 7.88 7.88 7.88 7.88 

302-N150-A0.2-FR 1.99 4.43 4.48 4.51 4.50 7.58 7.60 7.64 7.67 

302-N150-A0.4-FR 1.99 4.11 4.24 4.31 4.32 7.19 7.24 7.26 7.41 

302-N150-A0.6-FR 1.99 3.68 3.89 3.99 4.06 --- --- --- --- 
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                (a) Flange unfastened case                                                         (b) Flange fastened case 

Figure 5: Variation in reduction factors with a/h ratio for C142 section with centered web opening 

 

 

 
               (a) Flange unfastened case                                                            (b) Flange fastened case 

Figure 6: Variation in reduction factors with N/h for C142 section with centred web opening 

 

  
            (a) Flange unfastened case                                                              (b) Flange fastened case 

Figure 7: Variation in reduction factors with x/h for C142 section with offset web opening 
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4 PROPOSED STRENGTH REDUCTION FACTORS 

Table 2 shows the dimensions considered and web crippling strengths of the duplex grade stainless steel sections 

predicted from the finite element analysis. Using bivariate linear regression analysis, four new strength reduction factor 

equations (Rp) for duplex stainless steel EN 1.4462 grade with web openings are proposed. The equations are as follows:  

 

For centred web opening: 

For the case where the flange is unfastened to the bearing plate,  

1.11 0.37( ) 0.04( ) 1 (1)
p

a N
R

h h
= − − ≤

 
For the case where the flange is fastened to the bearing plate, 

1.08 0.33( ) 0.01( ) 1 (2)
p

a N
R

h h
= − − ≤

 
For offset web opening: 

For the case where the flange is unfastened to the bearing plate,  

0.91+0.19( ) 0.11( ) 1 (3)
p

a x
R

h h
= + ≤

 
For the case where the flange is fastened to the bearing plate, 

0.89 0.24( ) 0.11( ) 1 (4)
p

a x
R

h h
= + + ≤

 

The limits for the reduction factor equations (1), (2), (3) and (4) are / 157.8h t ≤ , / 120.97N t = , 

/ 1.15N h ≤ , / 0.8a h ≤ , and 90θ = º. 
 

5 COMPARISON OF NUMERICAL RESULTS WITH PROPOSED REDUCTION FACTORS 

For the duplex stainless steel grade, the values of the strength reduction factor (R) obtained from the numerical results are 

compared with the values of the proposed strength reduction factor (Rp) calculated using Eqs. (1)-(4). The results for C142 

are shown in Figure 8. In order to evaluate the accuracy of proposed equations, extensive statistical reliability analyses are 

performed. The results are summarized in Table 3.  

It should be noted, in calculating the reliability index, the resistance factor of ϕ=0.85 was used, corresponding to the 

reliability index β from the NAS specification. According to the NAS specification, design rules are reliable if the reliability 

index are more than 2.5. As can be seen in Table 3, the proposed reduction factors are a good match with the numerical 

results for the both cases of flanges unfastened and flanges fastened to the bearing plates. 

For example, for the centred circular web opening, the mean value of the web crippling reduction factor ratios are 1.00 

and 1.01 for the cases of flange unfastened and flange fastened to the bearing plate, respectively. The corresponding values of 

COV are 0.03 and 0.03, respectively. Similarly, the reliability index values (β) are 2.82 and 2.86, respectively. For the offset 

circular web opening, the mean value of the web crippling reduction factor ratios are 1.04 and 1.04 for the cases of flange 

unfastened and flange fastened to the bearing plate, respectively. The corresponding values of COV are 0.04 and 0.05, 

respectively. Similarly, the reliability index values (β) are 2.97 and 2.94, respectively. 

 

Table 3: Statistical analysis of strength reduction factor for duplex stainless steel grade  

Statistical parameters 

Centred circular web opening  

R (FEA) / Rp 

Offset circular web opening 

 R (FEA) / Rp 

Unfastened  

to bearing plate 

Fastened  

to bearing plate 

Unfastened  

to bearing plate 

Fastened  

to bearing plate 

Number of data 69 69 84 81 

Mean, Pm 0.99 1.00  1.04  1.04  

Coefficient of variation, Vp 0.09 0.08  0.04  0.05  

Reliability index, β  2.62 2.69 2.97 2.95 

Resistance factor, φ 0.85 0.85 0.85 0.85 
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Figure 8: Comparison of strength reduction factor for centred web opening where flange unfastened to bearing plate 

 
Therefore, the proposed strength reduction factor equations are able to reliably predict the influence of the circular web 

openings on the web crippling strengths of cold-formed stainless steel lipped channel-sections under the interior-one-flange 

(IOF) loading condition. 

6 CONCLUSIONS 

In this paper, the effect of web openings on the end-one-flange (EOF) loading condition of cold-formed stainless steel 

lipped channel-sections was investigated for duplex grade EN 1.4462. 728 non-linear elasto-plastic finite element analyses 

were conducted with different sizes of channel-section and opening. From the results of the finite element parametric study, 

four new web crippling strength reduction factor equations were proposed for the cases of both flange unfastened and flange 

fastened to the bearing plates. In order to evaluate the reliability of the proposed reduction factor equations, a reliability 

analysis was undertaken. It was demonstrated that the proposed strength reduction factors are generally conservative and 

agree well with the finite element results. It was shown that the proposed strength reduction factors provide a reliable design 

criteria when calibrated with a resistance factor of 0.85 ( 0.85)ϕ = .  
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