76 research outputs found

    Alignments of galaxies within cosmic filaments from SDSS DR7

    Full text link
    Using a sample of galaxy groups selected from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7), we examine the alignment between the orientation of galaxies and their surrounding large scale structure in the context of the cosmic web. The latter is quantified using the large-scale tidal field, reconstructed from the data using galaxy groups above a certain mass threshold. We find that the major axes of galaxies in filaments tend to be preferentially aligned with the directions of the filaments, while galaxies in sheets have their major axes preferentially aligned parallel to the plane of the sheets. The strength of this alignment signal is strongest for red, central galaxies, and in good agreement with that of dark matter halos in N-body simulations. This suggests that red, central galaxies are well aligned with their host halos, in quantitative agreement with previous studies based on the spatial distribution of satellite galaxies. There is a luminosity and mass dependence that brighter and more massive galaxies in filaments and sheets have stronger alignment signals. We also find that the orientation of galaxies is aligned with the eigenvector associated with the smallest eigenvalue of the tidal tensor. These observational results indicate that galaxy formation is affected by large-scale environments, and strongly suggests that galaxies are aligned with each other over scales comparable to those of sheets and filaments in the cosmic web.Comment: 11 pages, 10 figures, accepted for publication in Ap

    Spin alignments of spiral galaxies within the large-scale structure from SDSS DR7

    Full text link
    Using a sample of spiral galaxies selected from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7) and Galaxy Zoo 2 (GZ2), we investigate the alignment of spin axes of spiral galaxies with their surrounding large scale structure, which is characterized by the large-scale tidal field reconstructed from the data using galaxy groups above a certain mass threshold. We find that the spin axes of only have weak tendency to be aligned with (or perpendicular to) the intermediate (or minor) axis of the local tidal tensor. The signal is the strongest in a \cluster environment where all the three eigenvalues of the local tidal tensor are positive. Compared to the alignments between halo spins and local tidal field obtained in N-body simulations, the above observational results are in best agreement with those for the spins of inner regions of halos, suggesting that the disk material traces the angular momentum of dark matter halos in the inner regions.Comment: 8 pages, 7 figures, accepted for publication in Ap

    ELUCID - Exploring the Local Universe with reConstructed Initial Density field III: Constrained Simulation in the SDSS Volume

    Full text link
    A method we developed recently for the reconstruction of the initial density field in the nearby Universe is applied to the Sloan Digital Sky Survey Data Release 7. A high-resolution N-body constrained simulation (CS) of the reconstructed initial condition, with 307233072^3 particles evolved in a 500 Mpc/h box, is carried out and analyzed in terms of the statistical properties of the final density field and its relation with the distribution of SDSS galaxies. We find that the statistical properties of the cosmic web and the halo populations are accurately reproduced in the CS. The galaxy density field is strongly correlated with the CS density field, with a bias that depend on both galaxy luminosity and color. Our further investigations show that the CS provides robust quantities describing the environments within which the observed galaxies and galaxy systems reside. Cosmic variance is greatly reduced in the CS so that the statistical uncertainties can be controlled effectively even for samples of small volumes.Comment: submitted to ApJ, 19 pages, 22 figures. Please download the high-resolution version at http://staff.ustc.edu.cn/~whywang/paper

    Mapping the real space distributions of galaxies in SDSS DR7: I. Two Point Correlation Functions

    Full text link
    Using a method to correct redshift space distortion (RSD) for individual galaxies, we mapped the real space distributions of galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7). We use an ensemble of mock catalogs to demonstrate the reliability of our method. Here as the first paper in a series, we mainly focus on the two point correlation function (2PCF) of galaxies. Overall the 2PCF measured in the reconstructed real space for galaxies brighter than 0.1Mr5logh=19.0^{0.1}{\rm M}_r-5\log h=-19.0 agrees with the direct measurement to an accuracy better than the measurement error due to cosmic variance, if the reconstruction uses the correct cosmology. Applying the method to the SDSS DR7, we construct a real space version of the main galaxy catalog, which contains 396,068 galaxies in the North Galactic Cap with redshifts in the range 0.01z0.120.01 \leq z \leq 0.12. The Sloan Great Wall, the largest known structure in the nearby Universe, is not as dominant an over-dense structure as appears to be in redshift space. We measure the 2PCFs in reconstructed real space for galaxies of different luminosities and colors. All of them show clear deviations from single power-law forms, and reveal clear transitions from 1-halo to 2-halo terms. A comparison with the corresponding 2PCFs in redshift space nicely demonstrates how RSDs boost the clustering power on large scales (by about 4050%40-50\% at scales 10h1Mpc\sim 10 h^{-1}{\rm {Mpc}}) and suppress it on small scales (by about 7080%70-80\% at a scale of 0.3h1Mpc0.3 h^{-1}{\rm {Mpc}}).Comment: 19 pages, 13 figure

    Mapping the Real Space Distributions of Galaxies in SDSS DR7: II. Measuring the growth rate, clustering amplitude of matter and biases of galaxies at redshift 0.10.1

    Full text link
    We extend the real-space mapping method developed in Shi et at. (2016) so that it can be applied to flux-limited galaxy samples. We use an ensemble of mock catalogs to demonstrate the reliability of this extension, showing that it allows for an accurate recovery of the real-space correlation functions and galaxy biases. We also demonstrate that, using an iterative method applied to intermediate-scale clustering data, we can obtain an unbiased estimate of the growth rate of structure fσ8f\sigma_8, which is related to the clustering amplitude of matter, to an accuracy of 10%\sim 10\%. Applying this method to the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7), we construct a real-space galaxy catalog spanning the redshift range 0.01z0.20.01 \leq z \leq 0.2, which contains 584,473 galaxies in the north Galactic cap (NGC). Using this data, we infer \fss at a median redshift z=0.1z=0.1, which is consistent with the WMAP9 cosmology at the 1σ1\sigma level. By combining this measurement with the real-space clustering of galaxies and with galaxy-galaxy weak lensing measurements for the same sets of galaxies, we are able to break the degeneracy between ff, σ8\sigma_8, and bb. From the SDSS DR7 data alone, we obtain the following cosmological constraints at redshift z=0.1z=0.1: f=f=0.4640.040+0.0400.464^{+0.040}_{-0.040}, σ8=0.7690.089+0.121\sigma_8=0.769^{+0.121}_{-0.089}, and b=1.9100.268+0.234b=1.910^{+0.234}_{-0.268}, 1.4490.196+0.1941.449^{+0.194}_{-0.196}, 1.3010.177+0.1701.301^{+0.170}_{-0.177}, and 1.1960.161+0.159 1.196^{+0.159}_{-0.161}~ for galaxies within different absolute magnitude bins 0.1Mr5logh=[23,0,22.0],[22,0,21.0],[21.0,20.0]^{0.1}{\rm M}_r-5\log h=[-23,0, -22.0], [-22,0, -21.0], [-21.0, -20.0] and [20.0,19.0][-20.0, -19.0], respectively

    Evolution of the Galaxy - Dark Matter Connection and the Assembly of Galaxies in Dark Matter Halos

    Full text link
    We present a new model to describe the galaxy-dark matter connection across cosmic time, which unlike the popular subhalo abundance matching technique is self-consistent in that it takes account of the facts that (i) subhalos are accreted at different times, and (ii) the properties of satellite galaxies may evolve after accretion. Using observations of galaxy stellar mass functions out to z4z \sim 4, the conditional stellar mass function at z0.1z\sim 0.1 obtained from SDSS galaxy group catalogues, and the two-point correlation function (2PCF) of galaxies at z0.1z \sim 0.1 as function of stellar mass, we constrain the relation between galaxies and dark matter halos over the entire cosmic history from z4z \sim 4 to the present. This relation is then used to predict the median assembly histories of different stellar mass components within dark matter halos (central galaxies, satellite galaxies, and halo stars). We also make predictions for the 2PCFs of high-zz galaxies as function of stellar mass. Our main findings are the following: (i) Our model reasonably fits all data within the observational uncertainties, indicating that the Λ\LambdaCDM concordance cosmology is consistent with a wide variety of data regarding the galaxy population across cosmic time. (ii) ... [abridged]Comment: 37pages, 20 figures, major revision, data updated to SDSS DR7, main conclusions remain unchange

    ELUCID IV: Galaxy Quenching and its Relation to Halo Mass, Environment, and Assembly Bias

    Full text link
    We examine the quenched fraction of central and satellite galaxies as a function of galaxy stellar mass, halo mass, and the matter density of their large scale environment. Matter densities are inferred from our ELUCID simulation, a constrained simulation of local Universe sampled by SDSS, while halo masses and central/satellite classification are taken from the galaxy group catalog of Yang et al. The quenched fraction for the total population increases systematically with the three quantities. We find that the `environmental quenching efficiency', which quantifies the quenched fraction as function of halo mass, is independent of stellar mass. And this independence is the origin of the stellar mass-independence of density-based quenching efficiency, found in previous studies. Considering centrals and satellites separately, we find that the two populations follow similar correlations of quenching efficiency with halo mass and stellar mass, suggesting that they have experienced similar quenching processes in their host halo. We demonstrate that satellite quenching alone cannot account for the environmental quenching efficiency of the total galaxy population and the difference between the two populations found previously mainly arises from the fact that centrals and satellites of the same stellar mass reside, on average, in halos of different mass. After removing these halo-mass and stellar-mass effects, there remains a weak, but significant, residual dependence on environmental density, which is eliminated when halo assembly bias is taken into account. Our results therefore indicate that halo mass is the prime environmental parameter that regulates the quenching of both centrals and satellites.Comment: 21 pages, 16 figures, submitted to Ap
    corecore