5 research outputs found

    Characterization and Electrochemical Investigation of Boron-Doped Mesocarbon Microbeads Anode Materials for Lithium-Ion Battery

    Get PDF
    本文采用XPS ,SEM ,XRD和电化学充放电测试研究了硼掺杂的中间相碳素微球 (MCMB)的结构和性能 .结果表明掺杂硼提高了MCMB的石墨化程度和晶粒尺寸 ,极大地改变了MCMB的形貌 .电化学充放电实验说明硼掺杂的中间相碳素微球嵌锂过程处于较高的电位 ,并有较大的不可逆容量The anodic performances of boron doped and undoped mesocarbon microbeads(MCMBs) were comparatively studied and the structures were characterized by XPS,SEM,XRD and electrochemical measurements. It was found that boron doping samples greatly increased the degree of graphitization and the crystallite size,leading to quite different morphology. Electrochemical discharge/charge cycle tests indicate that lithium intercalation occurred at a little higher potential for the boron doped MCMBs, being attended by greater irreversible capacity loss.作者联系地址:厦门大学固体表面物理化学国家重点实验室厦门大学化学系!福建厦门361005,厦门大学固体表面物理化学国家重点实验室厦门大学化学系!福建厦门361005,厦门大学固体表面物理化学国家重点实验室厦门大学化学系!福建厦门361005,厦门大学固体表面物理化学国家重点实验室厦门大学化学Author's Address: State Key Lab for Physical Chemistry of Solid Surface, Dept. of Chem., Xiamen Univ., Xiamen 361005, Chin

    Recent developments in the electrolyte for LiC _6/electrolyte/cathode battery

    Get PDF
    综述现今锂离子电池电解液的研究进展 .评估了电解液中锂盐、溶剂、填加剂以及杂质等对电解液的电导、固体电解质相界面 (SEI)的形成、电池循环寿命等的影响We present a reviewed the development and status of electrolyte for LiC 6/electrolyte/cathode battery. The effect of the salt, solvent, additive and impurity on the conductivity of the electrolyte, formation of the solid_electrolyte_interphase (SEI) and cycle life of the battery were described.作者联系地址:厦门大学化学系固体表面物理化学国家重点实验室 ,厦门大学宝龙电池研究所 福建厦门,361005Author's Address: State Key Lab for Phys. Chem. of Solid Surface and Dept. of Chem., Xiamen Univ.; Xiamen University and Powerlong Battery Research Institute. Inc, Department of Chemistry,

    Study of Electrochemical Lithium Intercalation Performance of Ni_(0.67)Mg_(0.33)O

    No full text
     通过溶胶-凝胶法制备了Ni-Mg-O及作为对照物的NiO样品,研究了其电化学嵌锂性能,并对样品进行了XRD结构表征,Rietveld精化以及贮锂性能测试.结果表明:Ni-Mg-O电极由于Mg的掺入而抑制了其中Ni2+的还原,导致材料的比容量降低.但同时又因该样品形成均一的固溶体使得NiO分散效果较好,从而改善其循环性能.In the present work, Ni0.67Mg0.33O and NiO were produced by sol_gel method, and characterized by XRD, a rietveld refinement and the discharge/charge test.It was found that the magnesium_doping restrained the reduction of Ni and decreased the reversible capacity for the sample of Ni0.67Mg0.33O. But the formation of the solid solution after the magnesium_doping facilitated the high dispersion of NiO, and accordingly improved the electrochemical performance.作者联系地址:厦门大学化学系固体表面物理化学国家重点实验室,厦门大学化学系固体表面物理化学国家重点实验室,厦门大学化学系固体表面物理化学国家重点实验室,厦门大学化学系固体表面物理化学国家重点实验室,厦门大学化学系固体表面物理化学国家重点实验室 福建厦门 361005 ,福建厦门 361005 ,福建厦门 361005 ,福建厦门 361005 ,福建厦门 36100

    Study on the Viscosity of LBG/Acetone Solution Mixed with different Silica

    No full text
    本文讨论了增塑剂、剪切速率、不同含量和不同表面性质的二氧化硅对LBG(一种偏氟乙烯和六氟丙烯共聚物 )的丙酮溶液粘度的影响机理LBG is a copolymer of vinylidene fluoride (VF2) and hexafluorpropylene (HFP), factors that influence the viscosity of the LBG solution such as the shear rate, plasticizer, the content of the fumed silica with different surface treatment are discussed in detail.作者联系地址:厦门大学化学系固体表面物理化学国家重点实验室,厦门大学化学系固体表面物理化学国家重点实验室,厦门大学化学系固体表面物理化学国家重点实验室,厦门大学化学系固体表面物理化学国家重点实验室,厦门大学化学系固体表面物理化学国家重点实验室,厦门大学化学系固体表面物理化学Author's Address: State Key Lab for Phys. Chem. of Solid Surface and Dept. of Chem., Xiamen Univ., Xiamen 361005, Chin

    Study on the Gas Generation in Different Charging Voltage during Formation Process in Polymer Lithium-ion Battery

    No full text
     应用气相色谱方法初步探讨了聚合物锂离子电池在首次充电过程中于不同化成电压下产生气体的原因和机理.结果表明,当电池电解液采用1mol/LLiPF6-EC~DMC~EMC(三者体积比1∶1∶1)时,于化成电压小于2.5V下,产生的气体主要为H2和CO2等;化成电压为2.5V时,电解液中的EC开始分解,电压在3.0~3.5V的范围内,由于EC的还原分解,产生的气体主要为C2H4;而当电压大于3.0V时,由于电解液中DMC和EMC的分解,除了产生C2H4气体外,CH4,C2H6等烷烃类气体也开始出现;电压高于3.8V后,DMC和EMC的还原分解成为主反应.此外,当化成电压处于3.0~3.5V之间,化成过程中产生的气体量最大;电压大于3.5V后,由于电池负极表面的SEI层已基本形成,因此,电解液溶剂的还原分解反应受抑制,产生的气体的数量也随之迅速下降.The gases of polymer lithium_ion battery(PLI) generated under different voltages during the first charging process were examined by means of gas chromatography (GC), and the mechanism of the gas generation was discussed. The electrolyte used in batteries was 1 mol/L LiPF6_EC~DMC~EMC=1∶1∶1(in volume). The results showed that when the charging voltage is less than 2.5 V, the main component of generated gases are H2 and CO2, and when the charging voltage is 2.5 V, EC begins to decompose. Due to the decomposition of EC, the main generated gas is C2H4 when the charge voltages between 3.0 V and 3.5 V. As the voltage is higher than 3.0 V, the generated gases composed of C2H4 as well as CH4 and C2H6.The later are caused by the decomposition of DMC and EMC. When the charging voltage is higher than 3.8V, the decomposition of DMC and EMC becomes dominant. Furthermore, when the voltages are between 3.0 V and 3.5 V, the volumes of generated gases are the most. Since the solid electrolyte interface (SEI) on the surface of carbon electrode has been formed, while the charging voltage higher than 3.5 V, the decomposition of the electrolyte slowed down and then restrained, and the volume of the generated gases decreased quickly.作者联系地址:厦大宝龙电池研究所,厦大宝龙电池研究所,厦大宝龙电池研究所,厦大宝龙电池研究所,厦大宝龙电池研究所,厦大宝龙电池研究所,厦大宝龙电池研究所 福建厦门361005 ,福建厦门361005 ,福建厦门361005 ,福建厦门361005 ,福建厦门361005 ,福建厦门361005 ,福建厦门361005Author's Address: Xiamen University Powerlong Battery Research Institue,Xiamen 361005, Chin
    corecore