8 research outputs found

    The influence of cement kiln dust on strength and durability properties of cement-based systems

    No full text
    There are very few studies in the literature on the usage of CKD in cementitious systems. This article presents the laboratory study results on the influence of cement kiln dust (CKD) on the properties of mortar made with cement kiln dust and Portland cement. The article aims to prevent CKD's (known as a hazardous waste product) damage to nature by utilizing CKD in cementitious systems and contributing to sustainability by reducing cement amount in the cementitious system. For this purpose, 5%, 10%, 15%, and 20% of CKD were replaced with cement and binary cementitious systems were formed. For all mortar mixes, the water/binder ratio was kept constant at 0.5, and the sand/binder ratio was 3. Workability, dry unit weight, water absorption ratio and porosity, flexural strength, compressive strength, abrasion, carbonation, and high-temperature resistance tests were performed on the mortar specimens. Based on the results of laboratory work, it was observed that the replacement of CKD with cement reduces the workability of fresh mortar. Compressive and flexural strengths of CKD-added mixtures were found to be equivalent or insignificantly lower than that of the control sample. The addition of CKD had a negligible effect on water absorption and porosity of samples. Besides, the residual compressive strength determined after the elevated temperature test for the sample made with CKD were found to be equivalent or higher compared to the control sample. Present laboratory studies showed that utilization of CKD in cementitious mortar system is feasible in terms of testing conducted

    Effect of Nano-SiO2 on Strength and Hydration Characteristics of Ternary Cementitious Systems

    No full text
    This paper shows results of laboratory study on the effects of nano-SiO2 on Portland cement-fly ash systems. It is aimed to improve performance of fly ash–cement systems, particularly at early age, with the inclusion of nano-SiO2. In order to observe the effects of nano-SiO2 particles on the strength and hydration kinetics of fly ash blended cementitious systems, binary and ternary systems were prepared by adding 0.25–1.5% nano-SiO2 by weight of blended cements. Workability, setting time, water absorption capacity, fire resistance, compressive strength and isothermal calorimeter tests were conducted on the cementitious systems. The results indicate that increasing quantity of fly ash increased workability, setting time, water absorption capacity of cementitious systems, whereas the increasing quantity of nano-SiO2 reduced these values. Significant increment in compressive strength were observed, especially at early ages of fly ash–cement systems with nano-SiO2 addition, compared to fly ash added systems, which may compensate for the decrease in compressive strength caused by fly ash. Nano-SiO2 addition accelerated hydration reactions at early age. By partially eliminating the negative effects of fly ash with nano-SiO2, high rates of fly ash can be used in cementitious systems, thus forming more sustainable systems

    Effect of Nano-SiO2 on Strength and Hydration Characteristics of Ternary Cementitious Systems

    No full text
    This paper shows results of laboratory study on the effects of nano-SiO2 on Portland cement-fly ash systems. It is aimedto improve performance of fly ash–cement systems, particularly at early age, with the inclusion of nano-SiO2. In order toobserve the effects of nano-SiO2 particles on the strength and hydration kinetics of fly ash blended cementitious systems,binary and ternary systems were prepared by adding 0.25–1.5% nano-SiO2 by weight of blended cements. Workability,setting time, water absorption capacity, fire resistance, compressive strength and isothermal calorimeter tests were conductedon the cementitious systems. The results indicate that increasing quantity of fly ash increased workability, setting time, waterabsorption capacity of cementitious systems, whereas the increasing quantity of nano-SiO2 reduced these values. Significantincrement in compressive strength were observed, especially at early ages of fly ash–cement systems with nano-SiO2 addition,compared to fly ash added systems, which may compensate for the decrease in compressive strength caused by fly ash. NanoSiO2 addition accelerated hydration reactions at early age. By partially eliminating the negative effects of fly ash withnano-SiO2, high rates of fly ash can be used in cementitious systems, thus forming more sustainable systems.</p

    EFFECTS OF DRY PARTICLE COATING WITH NANO-AND MICROPARTICLES ON EARLY COMPRESSIVE STRENGTH OF PORTLAND CEMENT PASTES

    No full text
    It is known that nano-and microparticles have been very popular in recent years since their advantages. However, due to the very small size of such materials, they have very high tendency to agglomeration particularly for nanoparticles. Therefore, it is critical that they are properly distributed in the system to which they are added. This paper investigated the effects of dry particle coating with nano-and microparticles to solve the agglomeration problem. For a clear evaluation, paste samples were preferred to detemine the compressive strength. Nano-SiO2&nbsp;and nano-CaCO3, micro-CaCO3&nbsp;and micro-SiO2, also known as silica fume, were selected as particulate additives. It was studied by the addition of various percentages (0.3, 0.7, 1, 2, 3 and 5%) of nano-and microparticles in cementitious systems, replacing cement by weight with and without dry particle coating. Dry particle coating was made by using a high-speed paddle mixer. Portland cement and additive particles were mixed at 1500 rpm for 30 seconds in high-speed powder mixer designed for this purpose. The 3-day compressive strength of the cement-based samples to which particles were added at the specified rates was determined and the effect of the dry particle coating on the early strength was investigated. According to the results, it was observed that the production of paste with the dry particle coating technique gave higher compressive strength compared to the production of paste directly in early period. Especially with dry particle coating, compressive strength increased more than 100% in paste samples containing 0.3% nano-SiO2&nbsp;compared to direct addition without coating.</p

    Reaction kinetics and properties of pumice-based geopolymer systems cured at room temperature

    No full text
    This research investigated the kinetics of pumice-based geopolymer systems and their physical and mechanical properties. The effect of the Na2SiO3/NaOH ratio of geopolymer systems on the rate of heat evolution and total heat of reaction were examined via isothermal calorimetry of geopolymer pastes prepared with Na2SiO3/NaOH ratios of 2.5, 3, and 3.5. Hardened pastes were also studied with thermo-gravimetric analysis to determine weight loss. In addition, the unit weights and compressive strengths of the pastes prepared using pumice were measured. Although the hydration process starts the earliest in pumice-based geopolymer pastes with a Na2SiO3/ NaOH ratio of 2, they have the lowest total hydration temperature. Na2SiO3/NaOH ratio of 2.5 by mass, shows higher weight loss obtained from TGA results. The compressive strength of the paste sample, prepared with a Na2SiO3/NaOH ratio of 3.5 by mass, was the highest, with 36.30 MPa at 28d. Depending on the Na2SiO3/NaOH ratio, it is thought that as the amount of Na2SiO3 increases in the samples, silica gel formation increases in later ages

    Effects of dry particle coating with nano- and microparticles on early compressive strength of portland cement pastes

    No full text
    It is known that nano-and microparticles have been very popular in recent years since their advantages. However, due to the very small size of such materials, they have very high tendency to agglomeration particularly for nanoparticles. Therefore, it is critical that they are properly distributed in the system to which they are added. This paper investigated the effects of dry particle coating with nano-and microparticles to solve the agglomeration problem. For a clear evaluation, paste samples were preferred to detemine the compressive strength. Nano-SiO2 and nano-CaCO3, micro-CaCO3 and micro-SiO2, also known as silica fume, were selected as particulate additives. It was studied by the addition of various percentages (0.3, 0.7, 1, 2, 3 and 5%) of nano-and microparticles in cementitious systems, replacing cement by weight with and without dry particle coating. Dry particle coating was made by using a high-speed paddle mixer. Portland cement and additive particles were mixed at 1500 rpm for 30 seconds in high-speed powder mixer designed for this purpose. The 3-day compressive strength of the cement-based samples to which particles were added at the specified rates was determined and the effect of the dry particle coating on the early strength was investigated. According to the results, it was observed that the production of paste with the dry particle coating technique gave higher compressive strength compared to the production of paste directly in early period. Especially with dry particle coating, compressive strength increased more than 100% in paste samples containing 0.3% nano-SiO2 compared to direct addition without coating
    corecore