6 research outputs found

    Association of a Missense ALDH2 Single Nucleotide Polymorphism (Glu504Lys) With Benign Prostate Hyperplasia in a Korean Population

    Get PDF
    Purpose Aldehyde dehydrogenase 2 (ALDH2) is a well-known gene involved in alcohol and aldehyde metabolism. Moreover, recent studies have reported associations between ALDH2 and age-related disorders. Benign prostate hyperplasia (BPH) is an age-related disorder and genetic factors may contribute to its onset. In this study, we investigated the association of a well-studied ALDH2 single nucleotide polymorphism (SNP), rs671, with the onset and clinical features of BPH. Methods A total of 222 BPH patients and 214 control subjects were genotyped. The clinical features of the BPH patients (prostate volume, prostate-specific antigen level, and International Prostatic Symptom Score) were analyzed. Results The results show that rs671 was only associated with the volume of BPH in genotype and allele frequencies (P<0.05). Conclusion We propose that rs671 is an Asian-specific SNP in ALDH2 that may affect the disease progression of BPH in the Korean population

    Coating lithium titanate anodes with a mixed ionic-electronic conductor for high-rate lithium-ion batteries

    No full text
    Lithium titanate (Li4Ti5O12; LTO) is a promising anode material for fast (dis)charging Li-ion batteries (LIBs). However, its low Li diffusion coefficient and electronic conductivity limit its applications. Here, we uniformly coat the LTO surface with a 1.6 nm layer of partially lithiated titania (LixTiO2, x approximate to 0.5), which is found to be a mixed ionic-electronic conductor (MIEC), using a simple solid-state method. The MIEC layer simultaneously transfers electrons and Li-ions, facilitating efficient charge transfer to (de)lithiate LTO over the entire particle surface. MIEC-nanocoated LTO exhibits highly improved capacity retention and rate capability than pristine LTO; based on electrochemical simulations, MIEC nanocoating causes performance enhancement by maximum surface-area utilization for charge transfer. Furthermore, electrochemical impedance spectroscopy and density functional theory calculations confirm facile ionic transport and high electronic conductivity of LixTiO2 nano -layer. This general strategy of MIEC nanocoating can boost the electrochemical performances of various insu-lating electrodes, maximizing the materials utilization

    Improving the Separation Properties of Polybenzimidazole Membranes by Adding Acetonitrile for Organic Solvent Nanofiltration

    No full text
    In research on membranes, the addition of co-solvents to the polymer dope solution is a common method for tuning the morphology and separation performance. For organic solvent nanofiltration (OSN) applications, we synthesized polybenzimidazole (PBI) membranes with high separation properties and stability by adding acetonitrile (MeCN) to the dope solution, followed by crosslinking with dibromo-p-xylene. Accordingly, changes in the membrane structure and separation properties were investigated when MeCN was added. PBI/MeCN membranes with a dense and thick active layer and narrow finger-like macrovoids exhibited superior rejection properties in the ethanol solution compared with the pristine PBI membrane. After crosslinking, they displayed superior rejection properties (96.56% rejection of 366-g/mol polypropylene glycol). In addition, the membranes demonstrated stable permeances for various organic solvents, including acetone, methanol, ethanol, toluene, and isopropyl alcohol. Furthermore, to evaluate the feasibility of the modified PBI OSN membranes, ecamsule, a chemical product in the fine chemical industry, was recovered. Correspondingly, the efficient recovery of ecamsule from a toluene/methanol solution using the OSN process with PBI/MeCN membranes demonstrated their applicability in many fine chemical industries

    Isoporous Polyvinylidene Fluoride Membranes with Selective Skin Layers via a Thermal-Vapor Assisted Phase Separation Method for Industrial Purification Applications

    No full text
    The membrane filtration process is the most widely used purification process in various industries due to its high separation efficiency, process simplicity, and low cost. Although there is a wide range of membrane products with diverse materials and pore sizes on the market, there is a technological gap between microfiltration and ultrafiltration membranes. Here we developed highly porous polyvinylidene fluoride (PVDF) membranes with a selective skin layer with a pore size range of 20 to 80 nm by using a thermal-vapor assisted phase separation method. Porous and bi-continuous sublayers were generated from spinodal decomposition induced by cooling. The overall membrane structure and pore size changed with the dope composition, while the pore size and thickness of the selective skin layer were effectively controlled by water vapor exposure. The excellent nanoparticle removal efficiencies of the prepared PVDF membranes were confirmed, indicating their potential application in high-level purification processes to remove small trace organic or inorganic impurities from various industrial fluids

    Status of the Gen-IV Proliferation Resistance and Physical Protection (PRPP) Evaluation Methodology

    No full text
    Methodologies have been developed within the Generation IV International Forum (GIF) to support the assessment and improvement of system performance in the areas safeguards, security, economics and safety. Of these four areas, safeguards and security are the subjects of the GIF working group on Proliferation Resistance and Physical Protection (PRPP). Since the PRPP methodology (now at Revision 6) represents a mature, generic, and comprehensive evaluation approach, and is freely available on the GIF public website, several non-GIF technical groups have chosen to utilize the PRPP methodology for their own goals. Indeed, the results of the evaluations performed with the methodology are intended for three types of generic users: system designers, program policy makers, and external stakeholders. The PRPP Working Group developed the methodology through a series of demonstration and case studies. In addition, over the past few years various national and international groups have applied the methodology to inform nuclear energy system designs, as well as to support the development of approaches to advanced safeguards. A number of international workshops have also been held which have introduced the methodology to design groups and other stakeholders. In this paper we summarize the technical progress and accomplishments of the PRPP evaluation methodology, including applications outside GIF, and we outline the PRPP methodology’s relationship with the IAEA’s INPRO methodology. Current challenges with the efficient implementation of the methodology are outlined, along with our path forward for increasing its accessibility to a broader stakeholder audience – including supporting the next generation of skilled professionals in the nuclear non-proliferation field.JRC.E.8-Nuclear securit

    Electrochemical Generation of Mesopores and Residual Oxygen for the Enhanced Activity of Silver Electrocatalysts

    No full text
    The development of stable and efficient electrocatalysts is of key importance for the establishment of a sustainable society. The activity of a metal electrocatalyst is determined by its electrochemically active surface area and intrinsic activity, which can be increased using highly porous structures and heteroatomic doping, respectively. Herein, we propose a general strategy of generating mesopores and residual oxygen in metal electrocatalysts by reduction of metastable metal oxides using Ag2O3 electrodeposited onto carbon paper as a model system and demonstrating that the obtained multipurpose porous Ag electrocatalyst has high activity for the electroreduction of O-2 and CO2. The presence of mesopores and residual oxygen is confirmed by electrochemical and spectroscopic techniques, and quantum mechanical simulations prove the importance of residual oxygen for electrocatalytic activity enhancement. Thus, the adopted strategy is concluded to allow the synthesis of highly active metal catalysts with controlled mesoporosity and residual oxygen content
    corecore