310 research outputs found

    Armodafinil improves wakefulness and long-term episodic memory in nCPAP-adherent patients with excessive sleepiness associated with obstructive sleep apnea

    Get PDF
    Residual excessive sleepiness (ES) and impaired cognition can occur despite effective and regular nasal continuous positive airway pressure (nCPAP) therapy in some patients with obstructive sleep apnea (OSA). A pooled analysis of two 12-week, randomized, double-blind studies in nCPAP-adherent patients with ES associated with OSA evaluated the effect of armodafinil on wakefulness and cognition. Three hundred and ninety-one patients received armodafinil (150 or 250 mg) and 260 patients received placebo once daily for 12 weeks. Efficacy assessments included the Maintenance of Wakefulness Test (MWT), Cognitive Drug Research cognitive performance battery, Epworth Sleepiness Scale, and Brief Fatigue Inventory. Adverse events were monitored. Armodafinil increased mean MWT sleep latency from baseline to final visit by 2.0 min vs a decrease of 1.5 min with placebo (P < 0.0001). Compared with placebo, armodafinil significantly improved quality of episodic secondary memory (P < 0.05) and patients’ ability to engage in activities of daily living (P < 0.0001) and reduced fatigue (P < 0.01). The most common adverse events were headache, nausea, and insomnia. Armodafinil did not adversely affect desired nighttime sleep, and nCPAP use remained high (approximately 7 h/night). Adjunct treatment with armodafinil significantly improved wakefulness, long-term memory, and patients’ ability to engage in activities of daily living in nCPAP-adherent individuals with ES associated with OSA. Armodafinil also reduced patient-reported fatigue and was well tolerated

    Selective Gene Expression by Postnatal Electroporation during Olfactory Interneuron Neurogenesis

    Get PDF
    Neurogenesis persists in the olfactory system throughout life. The mechanisms of how new neurons are generated, how they integrate into circuits, and their role in coding remain mysteries. Here we report a technique that will greatly facilitate research into these questions. We found that electroporation can be used to robustly and selectively label progenitors in the Subventicular Zone. The approach was performed postnatally, without surgery, and with near 100% success rates. Labeling was found in all classes of interneurons in the olfactory bulb, persisted to adulthood and had no adverse effects. The broad utility of electroporation was demonstrated by encoding a calcium sensor and markers of intracellular organelles. The approach was found to be effective in wildtype and transgenic mice as well as rats. Given its versatility, robustness, and both time and cost effectiveness, this method offers a powerful new way to use genetic manipulation to understand adult neurogenesis

    Ovarian carcinoma associated with pregnancy: A clinicopathologic analysis of 23 cases and review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to analyze and describe cases of ovarian cancer in pregnant women treated at our center and to review the literature concerned, and to discuss the rationale for therapy.</p> <p>Methods</p> <p>Twenty-Three patients of ovarian malignancies during pregnancy were treated at Vali- Asr Hospital between 1991 and 2002. Data on treatment and follow-up were evaluated.</p> <p>Results</p> <p>The incidence of ovarian carcinoma associated with pregnancy in our series was 0.083/1000 deliveries. Eleven (47.8%) were found with ovarian malignant germ cell tumors, five (21.7%) with low malignant potential tumors, four (17.4%) with invasive epithelial tumors, and three (13%) with sex cord stromal tumors. Seventeen (73.9%) of the patients were diagnosed in stage I and had complete remission. Five of the six in advanced stage died. The mean follow-up was 36.3 months. The prognosis was significantly related with stage and histological type (<it>P </it>< 0.05). Sixteen healthy live babies were recorded in this group, and two premature newborn died of respiratory distress syndrome. Chemotherapy was administered to 44% of the patients, in two cases during pregnancy. Overall survival at 5 years was 61%. In most of case conservative surgical treatment could be performed with adequate staging and debulking.</p> <p>Conclusion</p> <p>Early finding of ascitis by ultrasound and persistent large ovarian mass during pregnancy may be related to malignancy and advanced stage. Pregnant women in advanced stage of ovarian cancer seem to have poor prognosis.</p

    A Type 2C Protein Phosphatase FgPtc3 Is Involved in Cell Wall Integrity, Lipid Metabolism, and Virulence in Fusarium graminearum

    Get PDF
    Type 2C protein phosphatases (PP2Cs) play important roles in regulating many biological processes in eukaryotes. Currently, little is known about functions of PP2Cs in filamentous fungi. The causal agent of wheat head blight, Fusarium graminearum, contains seven putative PP2C genes, FgPTC1, -3, -5, -5R, -6, -7 and -7R. In order to investigate roles of these PP2Cs, we constructed deletion mutants for all seven PP2C genes in this study. The FgPTC3 deletion mutant (ΔFgPtc3-8) exhibited reduced aerial hyphae formation and deoxynivalenol (DON) production, but increased production of conidia. The mutant showed increased resistance to osmotic stress and cell wall-damaging agents on potato dextrose agar plates. Pathogencity assays showed that ΔFgPtc3-8 is unable to infect flowering wheat head. All of the defects were restored when ΔFgPtc3-8 was complemented with the wild-type FgPTC3 gene. Additionally, the FgPTC3 partially rescued growth defect of a yeast PTC1 deletion mutant under various stress conditions. Ultrastructural and histochemical analyses showed that conidia of ΔFgPtc3-8 contained an unusually high number of large lipid droplets. Furthermore, the mutant accumulated a higher basal level of glycerol than the wild-type progenitor. Quantitative real-time PCR assays showed that basal expression of FgOS2, FgSLT2 and FgMKK1 in the mutant was significantly higher than that in the wild-type strain. Serial analysis of gene expression in ΔFgPtc3-8 revealed that FgPTC3 is associated with various metabolic pathways. In contrast to the FgPTC3 mutant, the deletion mutants of FgPTC1, FgPTC5, FgPTC5R, FgPTC6, FgPTC7 or FgPTC7R did not show aberrant phenotypic features when grown on PDA medium or inoculated on wheat head. These results indicate FgPtc3 is the key PP2C that plays a critical role in a variety of cellular and biological functions, including cell wall integrity, lipid and secondary metabolisms, and virulence in F. graminearum

    Moderate Traumatic Brain Injury Causes Acute Dendritic and Synaptic Degeneration in the Hippocampal Dentate Gyrus

    Get PDF
    Hippocampal injury-associated learning and memory deficits are frequent hallmarks of brain trauma and are the most enduring and devastating consequences following traumatic brain injury (TBI). Several reports, including our recent paper, showed that TBI brought on by a moderate level of controlled cortical impact (CCI) induces immature newborn neuron death in the hippocampal dentate gyrus. In contrast, the majority of mature neurons are spared. Less research has been focused on these spared neurons, which may also be injured or compromised by TBI. Here we examined the dendrite morphologies, dendritic spines, and synaptic structures using a genetic approach in combination with immunohistochemistry and Golgi staining. We found that although most of the mature granular neurons were spared following TBI at a moderate level of impact, they exhibited dramatic dendritic beading and fragmentation, decreased number of dendritic branches, and a lower density of dendritic spines, particularly the mushroom-shaped mature spines. Further studies showed that the density of synapses in the molecular layer of the hippocampal dentate gyrus was significantly reduced. The electrophysiological activity of neurons was impaired as well. These results indicate that TBI not only induces cell death in immature granular neurons, it also causes significant dendritic and synaptic degeneration in pathohistology. TBI also impairs the function of the spared mature granular neurons in the hippocampal dentate gyrus. These observations point to a potential anatomic substrate to explain, in part, the development of posttraumatic memory deficits. They also indicate that dendritic damage in the hippocampal dentate gyrus may serve as a therapeutic target following TBI

    The Effect of DNA-Dependent Protein Kinase on Adeno-Associated Virus Replication

    Get PDF
    BACKGROUND: DNA-dependent protein kinase (DNA-PK) is a DNA repair enzyme and plays an important role in determining the molecular fate of the rAAV genome. However, the effect this cellular enzyme on rAAV DNA replication remains elusive. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we characterized the roles of DNA-PK on recombinant adeno-associated virus DNA replication. Inhibition of DNA-PK by a DNA-PK inhibitor or siRNA targeting DNA-PKcs significantly decreased replication of AAV in MO59K and 293 cells. Southern blot analysis showed that replicated rAAV DNA formed head-to-head or tail-to-tail junctions. The head-to-tail junction was low or undetectable suggesting AAV-ITR self-priming is the major mechanism for rAAV DNA replication. In an in vitro replication assay, anti-Ku80 antibody strongly inhibited rAAV replication, while anti-Ku70 antibody moderately decreased rAAV replication. Similarly, when Ku heterodimer (Ku70/80) was depleted, less replicated rAAV DNA were detected. Finally, we showed that AAV-ITRs directly interacted with Ku proteins. CONCLUSION/SIGNIFICANCE: Collectively, our results showed that that DNA-PK enhances rAAV replication through the interaction of Ku proteins and AAV-ITRs
    corecore