41 research outputs found
Studies on simultaneous nhibition of trypsin and chymotrypsin by horsegram Bowman-Birk inhibitor
Bowman-Birk inhibitors (BBI) isolated from plant seeds are small proteins active against trypsin and/or chymotrypsin. These inhibitors have been extensively studied in terms of their structure, interactions, function and evolution. Examination of the known three-dimensional structures of BBIs revealed similarities and subtle differences.The hydrophobic core, deduced from surface accessibility and hydrophobicity plots, corresponding to the two tandem structural domains of the double headed BBI are related by an almost exact two-fold, in contrast to the reactive site loops which depart appreciably from the two-fold symmetry. Also, the orientations of inhibitory loops in soybean and peanut inhibitors were different with respect to the rigid core. Based on the structure of Adzuki bean BBI-trypsin complex, models of trypsin and chymotryspin bound to the monomeric soybean BBI (SBI) were constructed. There were minor short contacts between the two enzymes bound to the inhibitor suggesting near independence of binding. Binding studies revealed that the inhibition of one enzyme in the presence of the other is associated with a minor negative cooperativity. In order to assess the functional significance of the reported oligomeric forms of BBI, binding of proteases to the crystallographic and non-crystallographic dimers as found in the crystal structure of peanut inhibitor were examined. It was found that all the active sites in these oligomers cannot simultaneously participate in inhibition
Analysis of the amino acid sequences of plant Bowman-Birk inhibitors
Plant seeds contain a large number of protease inhibitors of animal, fungal, and bacterial origin. One of the well-studied families of these inhibitors is the Bowman-Birk family(BBI). The BBIs from dicotyledonous seeds are 8K, double-headed proteins. In contrast, the 8K inhibitors from monocotyledonous seeds are single headed. Monocots also have a 16K, double-headed inhibitor. We have determined the primary structure of a Bowman-Birk inhibitor from a dicot, horsegram, by sequential edman analysis of the intact protein and peptides derived from enzymatic and chemical cleavage. The 76-residue-long inhibitor is very similar to that ofMacrotyloma axillare. An analysis of this inhibitor along with 26 other Bowman-Birk inhibitor domains (MW 8K) available in the SWISSPROT databank revealed that the proteins from monocots and dicots belong to related but distinct families. Inhibitors from monocots show larger variation in sequence. Sequence comparison shows that a crucial disulphide which connects the amino and carboxy termini of the active site loop is lost in monocots. The loss of a reactive site in monocots seems to be correlated to this. However, it appears that this disulphide is not absolutely essential for retention of inhibitory function. Our analysis suggests that gene duplication leading to a 16K inhibitor in monocots has occurred, probably after the divergence of monocots and dicots, and also after the loss of second reactive site in monocots