294 research outputs found

    Immuno-targeting the multifunctional CD38 using nanobody

    Get PDF
    published_or_final_versio

    Circular Permutation of Red Fluorescent Proteins

    Get PDF
    Circular permutation of fluorescent proteins provides a substrate for the design of molecular sensors. Here we describe a systematic exploration of permutation sites for mCherry and mKate using a tandem fusion template approach. Circular permutants retaining more than 60% (mCherry) and 90% (mKate) brightness of the parent molecules are reported, as well as a quantitative evaluation of the fluorescence from neighboring mutations. Truncations of circular permutants indicated essential N- and C- terminal segments and substantial flexibility in the use of these molecules. Structural evaluation of two cp-mKate variants indicated no major conformational changes from the previously reported wild-type structure, and cis conformation of the chromophores. Four cp-mKates were identified with over 80% of native fluorescence, providing important new building blocks for sensor and complementation experiments

    The Influence of Recovery and Training Phases on Body Composition, Peripheral Vascular Function and Immune System of Professional Soccer Players

    Get PDF
    Professional soccer players have a lengthy playing season, throughout which high levels of physical stress are maintained. The following recuperation period, before starting the next pre-season training phase, is generally considered short but sufficient to allow a decrease in these stress levels and therefore a reduction in the propensity for injury or musculoskeletal tissue damage. We hypothesised that these physical extremes influence the body composition, blood flow, and endothelial/immune function, but that the recuperation may be insufficient to allow a reduction of tissue stress damage. Ten professional football players were examined at the end of the playing season, at the end of the season intermission, and after the next pre-season endurance training. Peripheral blood flow and body composition were assessed using venous occlusion plethysmography and DEXA scanning respectively. In addition, selected inflammatory and immune parameters were analysed from blood samples. Following the recuperation period a significant decrease of lean body mass from 74.4±4.2 kg to 72.2±3.9 kg was observed, but an increase of fat mass from 10.3±5.6 kg to 11.1±5.4 kg, almost completely reversed the changes seen in the pre-season training phase. Remarkably, both resting and post-ischemic blood flow (7.3±3.4 and 26.0±6.3 ml/100 ml/min) respectively, were strongly reduced during the playing and training stress phases, but both parameters increased to normal levels (9.0±2.7 and 33.9±7.6 ml/100 ml/min) during the season intermission. Recovery was also characterized by rising levels of serum creatinine, granulocytes count, total IL-8, serum nitrate, ferritin, and bilirubin. These data suggest a compensated hypo-perfusion of muscle during the playing season, followed by an intramuscular ischemia/reperfusion syndrome during the recovery phase that is associated with muscle protein turnover and inflammatory endothelial reaction, as demonstrated by iNOS and HO-1 activation, as well as IL-8 release. The data provided from this study suggest that the immune system is not able to function fully during periods of high physical stress. The implications of this study are that recuperation should be carefully monitored in athletes who undergo intensive training over extended periods, but that these parameters may also prove useful for determining an individual's risk of tissue stress and possibly their susceptibility to progressive tissue damage or injury

    A Bayesian Model for Detection of Highorder Interactions Among Genetic Variants in Genome-Wide Association Studies

    Get PDF
    Background: A central question for disease studies and crop improvements is how genetics variants drive phenotypes. Genome Wide Association Study (GWAS) provides a powerful tool for characterizing the genotypephenotype relationships in complex traits and diseases. Epistasis (gene-gene interaction), including high-order interaction among more than two genes, often plays important roles in complex traits and diseases, but current GWAS analysis usually just focuses on additive effects of single nucleotide polymorphisms (SNPs). The lack of effective computational modelling of high-order functional interactions often leads to significant under-utilization of GWAS data. Results: We have developed a novel Bayesian computational method with a Markov Chain Monte Carlo (MCMC) search, and implemented the method as a Bayesian High-order Interaction Toolkit (BHIT) for detecting epistatic interactions among SNPs. BHIT first builds a Bayesian model on both continuous data and discrete data, which is capable of detecting high-order interactions in SNPs related to case—control or quantitative phenotypes. We also developed a pipeline that enables users to apply BHIT on different species in different use cases. Conclusions: Using both simulation data and soybean nutritional seed composition studies on oil content and protein content, BHIT effectively detected some high-order interactions associated with phenotypes, and it outperformed a number of other available tools. BHIT is freely available for academic users at http://digbio.missouri.edu/BHIT/

    Molecular Mechanism of a Green-Shifted, pH-Dependent Red Fluorescent Protein mKate Variant

    Get PDF
    Fluorescent proteins that can switch between distinct colors have contributed significantly to modern biomedical imaging technologies and molecular cell biology. Here we report the identification and biochemical analysis of a green-shifted red fluorescent protein variant GmKate, produced by the introduction of two mutations into mKate. Although the mutations decrease the overall brightness of the protein, GmKate is subject to pH-dependent, reversible green-to-red color conversion. At physiological pH, GmKate absorbs blue light (445 nm) and emits green fluorescence (525 nm). At pH above 9.0, GmKate absorbs 598 nm light and emits 646 nm, far-red fluorescence, similar to its sequence homolog mNeptune. Based on optical spectra and crystal structures of GmKate in its green and red states, the reversible color transition is attributed to the different protonation states of the cis-chromophore, an interpretation that was confirmed by quantum chemical calculations. Crystal structures reveal potential hydrogen bond networks around the chromophore that may facilitate the protonation switch, and indicate a molecular basis for the unusual bathochromic shift observed at high pH. This study provides mechanistic insights into the color tuning of mKate variants, which may aid the development of green-to-red color-convertible fluorescent sensors, and suggests GmKate as a prototype of genetically encoded pH sensors for biological studies

    Search for ψ(3770)→ charmless final states involving η or π0 mesons

    Get PDF
    We search for ψ(3770) → π+π-η, K+K-η, pp̄η, ρ0π+π-η, K+K-π+π-η, pp̄π+π-η, pp̄K+K-η and pp̄K+K- π0 using data samples of 17.3 and 6.5 pb-1 integrated luminosities recorded at the center-of-mass energies of 3.773 and 3.65 GeV, respectively, by the BES-II detector operating at the BEPC collider. We obtain cross section measurements at both energies and upper limits on ψ(3770) decay branching fractions to the final states studied. © © Springer-Verlag / Società Italiana di Fisica 2010.published_or_final_versionSpringer Open Choice, 21 Feb 201

    Experimental studies of e + e -→ some charmless processes containing K S0 at √s = 3.773 and 3.65 GeV

    Get PDF
    We measure the observed cross sections for the charmless processes e + e -→K S0 K - K - K + π ++ c.c., K S0 K - π + η+c.c., K S0 K - π + π + π - η+c.c., K S0 K - K - K + π + η+c.c., K S0 K - K - K + π + π 0+c.c., K S0 K - ρ ++c.c. and K S0 K - π + ρ 0+c.c. We also extract upper limits on the branching fractions for ψ(3770) decays into these final states at 90% C.L. Analyzed data samples correspond to 17.3 pb-1 and 6.5 pb-1 integrated luminosities registered, respectively, at √s = 3.773 and 3.65 GeV, with the BES-II detector at the BEPC collider. © 2009 Springer-Verlag / Società Italiana di Fisica.published_or_final_versionSpringer Open Choice, 21 Feb 201
    corecore