1,862 research outputs found

    香港地区溶液除湿与蒸发冷却复合系统的节能分析

    Get PDF
    Author name used in this publication: 肖赋Title in Traditional Chinese: 香港地區溶液除濕與蒸發冷卻複合系統的節能分析Journal title in Traditional Chinese: 建築科學Version of RecordPublishe

    Entanglement of single-photons and chiral phonons in atomically thin WSe2_2

    Full text link
    Quantum entanglement is a fundamental phenomenon which, on the one hand, reveals deep connections between quantum mechanics, gravity and the space-time; on the other hand, has practical applications as a key resource in quantum information processing. While it is routinely achieved in photon-atom ensembles, entanglement involving the solid-state or macroscopic objects remains challenging albeit promising for both fundamental physics and technological applications. Here, we report entanglement between collective, chiral vibrations in two-dimensional (2D) WSe2_2 host --- chiral phonons (CPs) --- and single-photons emitted from quantum dots (QDs) present in it. CPs which carry angular momentum were recently observed in WSe2_2 and are a distinguishing feature of the underlying honeycomb lattice. The entanglement results from a "which-way" scattering process, involving an optical excitation in a QD and doubly-degenerate CPs, which takes place via two indistinguishable paths. Our unveiling of entanglement involving a macroscopic, collective excitation together with strong interaction between CPs and QDs in 2D materials opens up ways for phonon-driven entanglement of QDs and engineering chiral or non-reciprocal interactions at the single-photon level

    The influence of biological soil crusts on dew deposition in Gurbantunggut Desert, Northwestern China

    Get PDF
    Dew is an important source of moisture for plants, biological soil crusts, invertebrates and small vertebrates in desert environments. In this paper, measurements were taken to investigate the effects of three different types of biological soil crusts (cyanobacteria, lichen and moss) and bare sand on dew deposition in the Gurbantunggut Desert. Dew quantities were measured using micro-lysimeters with a diameter of 6 cm and a height of 3.5 cm. The results showed that the total amount of dew deposited increased with the development of soil crusts, from bare sand to cyanobacterial crust to lichen crust to moss crust. The average amount of dew deposited daily on the moss crust was the highest of all and it was significant higher than the other three soil surfaces (lichen crust, cyanobacterial crust and bare sand) (p < 0.05). During the period of the study, for each type of crust studied, the maximum amount of dew recorded was several times greater than the minimum. Moss crust was characterized by having the greatest amount of dew at dawn and also the maximum amount of dew deposited, whereas bare sand yielded the lowest amount of dew, with lichen crust and cyanobacterial crust exhibiting intermediate values. However, this was not the case for dew duration, as bare sand retained moisture for the longest period of time, followed by cyanobacterial crust, moss crust and finally lichen crust. Dew continued to condense even after sunrise. Furthermore, the differences in dew deposition may be partially attributed to an effect of the biological soil crusts on surface area. This study demonstrates the important effect of biological soil crusts upon dew deposition and may assist in evaluating the role of dew in and and semi-arid environments. (C) 2009 Elsevier B.V. All rights reserved

    Replication and Fine Mapping for Association of the C2orf43, FOXP4, GPRC6A and RFX6 Genes with Prostate Cancer in the Chinese Population

    Get PDF
    Prostate cancer represents the leading cause of male death across the world. A recent genome-wide association study (GWAS) identified five novel susceptibility loci for prostate cancer in the Japanese population. This study is to replicate and fine map the potential association of these five loci with prostate cancer in the Chinese Han population.In Phase I of the study, we tested the five single nucleotide polymorphisms (SNPs) which showed the strongest association evidence in the original GWAS in Japanese. The study sample consists of 1,169 Chinese Hans, comprising 483 patients and 686 healthy controls. Then in phase II, flanking SNPs of the successfully replicated SNPs in Phase I were genotyped and tested for association with prostate cancer to fine map those significant association signals.We successfully replicated the association of rs13385191 (located in the C2orf43 gene, P = 8.60×10(-5)), rs12653946 (P = 1.33×10(-6)), rs1983891 (FOXP4, P = 6.22×10(-5)), and rs339331 (GPRC6A/RFX6, P = 1.42×10(-5)) with prostate cancer. The most significant odds ratio (OR) was recorded as 1.41 (95% confidence interval 1.18-1.68) for rs12653946. Rs9600079 did not show significant association (P = 8.07×10(-2)) with prostate cancer in this study. The Phase II study refined these association signals, and identified several SNPs showing more significant association with prostate cancer than the very SNPs tested in Phase I.Our results provide further support for association of the C2orf43, FOXP4, GPRC6A and RFX6 genes with prostate cancer in Eastern Asian populations. This study also characterized the novel loci reported in the original GWAS with more details. Further work is still required to determine the functional variations and finally clarify the underlying biological mechanisms

    Phenethyl isothiocyanate exhibits antileukemic activity in vitro and in vivo by inactivation of Akt and activation of JNK pathways

    Get PDF
    Effects of phenethyl isothiocyanate (PEITC) have been investigated in human leukemia cells (U937, Jurkat, and HL-60) as well as in primary human acute myeloid leukemia (AML) cells in relation to apoptosis and cell signaling events. Exposure of cells to PEITC resulted in pronounced increase in the activation of caspase-3, -8, -9, cleavage/degradation of PARP, and apoptosis in dose- and time-dependent manners. These events were accompanied by the caspase-independent downregulation of Mcl-1, inactivation of Akt, as well as activation of Jun N-terminal kinase (JNK). Inhibition of PI3K/Akt by LY294002 significantly enhanced PEITC-induced apoptosis. Conversely, enforced activation of Akt by a constitutively active Akt construct markedly abrogated PEITC-mediated JNK activation, Mcl-1 downregulation, caspase activation, and apoptosis, and also interruption of the JNK pathway by pharmacological or genetically (e.g., siRNA) attenuated PEITC-induced apoptosis. Finally, administration of PEITC markedly inhibited tumor growth and induced apoptosis in U937 xenograft model in association with inactivation of Akt, activation of JNK, as well as downregulation of Mcl-1. Taken together, these findings represent a novel mechanism by which agents targeting Akt/JNK/Mcl-1 pathway potentiate PEITC lethality in transformed and primary human leukemia cells and inhibitory activity of tumor growth of U937 xenograft model

    Domain wall brane in squared curvature gravity

    Full text link
    We suggest a thick braneworld model in the squared curvature gravity theory. Despite the appearance of higher order derivatives, the localization of gravity and various bulk matter fields is shown to be possible. The existence of the normalizable gravitational zero mode indicates that our four-dimensional gravity is reproduced. In order to localize the chiral fermions on the brane, two types of coupling between the fermions and the brane forming scalar is introduced. The first coupling leads us to a Schr\"odinger equation with a volcano potential, and the other a P\"oschl-Teller potential. In both cases, the zero mode exists only for the left-hand fermions. Several massive KK states of the fermions can be trapped on the brane, either as resonant states or as bound states.Comment: 18 pages, 5 figures and 1 table, references added, improved version to be published in JHE

    Transition between Two Regimes Describing Internal Fluctuation of DNA in a Nanochannel

    Get PDF
    We measure the thermal fluctuation of the internal segments of a piece of DNA confined in a nanochannel about 50100 nm wide. This local thermodynamic property is key to accurate measurement of distances in genomic analysis. For DNA in 100 nm channels, we observe a critical length scale 10 m for the mean extension of internal segments, below which the de Gennes' theory describes the fluctuations with no fitting parameters, and above which the fluctuation data falls into Odijk's deflection theory regime. By analyzing the probability distributions of the extensions of the internal segments, we infer that folded structures of length 150250 nm, separated by 10 m exist in the confined DNA during the transition between the two regimes. For 50 nm channels we find that the fluctuation is significantly reduced since the Odijk regime appears earlier. This is critical for genomic analysis. We further propose a more detailed theory based on small fluctuations and incorporating the effects of confinement to explicitly calculate the statistical properties of the internal fluctuations. Our theory is applicable to polymers with heterogeneous mechanical properties confined in non-uniform channels. We show that existing theories for the end-to-end extension/fluctuation of polymers can be used to study the internal fluctuations only when the contour length of the polymer is many times larger than its persistence length. Finally, our results suggest that introducing nicks in the DNA will not change its fluctuation behavior when the nick density is below 1 nick per kbp DNA
    corecore