29 research outputs found

    Role of the JNK/c-Jun/AP-1 signaling pathway in galectin-1-induced T-cell death

    Get PDF
    Galectin-1 (gal-1), an endogenous Ξ²-galactoside-binding protein, triggers T-cell death through several mechanisms including the death receptor and the mitochondrial apoptotic pathway. In this study we first show that gal-1 initiates the activation of c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase kinase 4 (MKK4), and MKK7 as upstream JNK activators in Jurkat T cells. Inhibition of JNK activation with sphingomyelinase inhibitors (20 μM desipramine, 20 μM imipramine), with the protein kinase C-Ξ΄ (PKCΞ΄) inhibitor rottlerin (10 μM), and with the specific PKCΞΈ pseudosubstrate inhibitor (30 μM) indicates that ceramide and phosphorylation by PKCΞ΄ and PKCΞΈ mediate gal-1-induced JNK activation. Downstream of JNK, we observed increased phosphorylation of c-Jun, enhanced activating protein-1 (AP-1) luciferase reporter, and AP-1/DNA-binding in response to gal-1. The pivotal role of the JNK/c-Jun/AP-1 pathway for gal-1-induced apoptosis was documented by reduction of DNA fragmentation after inhibition JNK by SP600125 (20 μM) or inhibition of AP-1 activation by curcumin (2 μM). Gal-1 failed to induce AP-1 activation and DNA fragmentation in CD3-deficient Jurkat 31-13 cells. In Jurkat E6.1 cells gal-1 induced a proapoptotic signal pattern as indicated by decreased antiapoptotic Bcl-2 expression, induction of proapoptotic Bad, and increased Bcl-2 phosphorylation. The results provide evidence that the JNK/c-Jun/AP-1 pathway plays a key role for T-cell death regulation in response to gal-1 stimulation

    Cytotoxicity of CD56bright NK Cells towards Autologous Activated CD4+ T Cells Is Mediated through NKG2D, LFA-1 and TRAIL and Dampened via CD94/NKG2A

    Get PDF
    In mouse models of chronic inflammatory diseases, Natural Killer (NK) cells can play an immunoregulatory role by eliminating chronically activated leukocytes. Indirect evidence suggests that NK cells may also be immunoregulatory in humans. Two subsets of human NK cells can be phenotypically distinguished as CD16+CD56dim and CD16dim/βˆ’CD56bright. An expansion in the CD56bright NK cell subset has been associated with clinical responses to therapy in various autoimmune diseases, suggesting an immunoregulatory role for this subset in vivo. Here we compared the regulation of activated human CD4+ T cells by CD56dim and CD56bright autologous NK cells in vitro. Both subsets efficiently killed activated, but not resting, CD4+ T cells. The activating receptor NKG2D, as well as the integrin LFA-1 and the TRAIL pathway, played important roles in this process. Degranulation by NK cells towards activated CD4+ T cells was enhanced by IL-2, IL-15, IL-12+IL-18 and IFN-Ξ±. Interestingly, IL-7 and IL-21 stimulated degranulation by CD56bright NK cells but not by CD56dim NK cells. NK cell killing of activated CD4+ T cells was suppressed by HLA-E on CD4+ T cells, as blocking the interaction between HLA-E and the inhibitory CD94/NKG2A NK cell receptor enhanced NK cell degranulation. This study provides new insight into CD56dim and CD56bright NK cell-mediated elimination of activated autologous CD4+ T cells, which potentially may provide an opportunity for therapeutic treatment of chronic inflammation

    Complete Genome Sequence of the N2-Fixing Broad Host Range Endophyte Klebsiella pneumoniae 342 and Virulence Predictions Verified in Mice

    Get PDF
    We report here the sequencing and analysis of the genome of the nitrogen-fixing endophyte, Klebsiella pneumoniae 342. Although K. pneumoniae 342 is a member of the enteric bacteria, it serves as a model for studies of endophytic, plant-bacterial associations due to its efficient colonization of plant tissues (including maize and wheat, two of the most important crops in the world), while maintaining a mutualistic relationship that encompasses supplying organic nitrogen to the host plant. Genomic analysis examined K. pneumoniae 342 for the presence of previously identified genes from other bacteria involved in colonization of, or growth in, plants. From this set, approximately one-third were identified in K. pneumoniae 342, suggesting additional factors most likely contribute to its endophytic lifestyle. Comparative genome analyses were used to provide new insights into this question. Results included the identification of metabolic pathways and other features devoted to processing plant-derived cellulosic and aromatic compounds, and a robust complement of transport genes (15.4%), one of the highest percentages in bacterial genomes sequenced. Although virulence and antibiotic resistance genes were predicted, experiments conducted using mouse models showed pathogenicity to be attenuated in this strain. Comparative genomic analyses with the presumed human pathogen K. pneumoniae MGH78578 revealed that MGH78578 apparently cannot fix nitrogen, and the distribution of genes essential to surface attachment, secretion, transport, and regulation and signaling varied between each genome, which may indicate critical divergences between the strains that influence their preferred host ranges and lifestyles (endophytic plant associations for K. pneumoniae 342 and presumably human pathogenesis for MGH78578). Little genome information is available concerning endophytic bacteria. The K. pneumoniae 342 genome will drive new research into this less-understood, but important category of bacterial-plant host relationships, which could ultimately enhance growth and nutrition of important agricultural crops and development of plant-derived products and biofuels
    corecore