25 research outputs found

    Exercise and bone health across the lifespan

    Get PDF
    With ageing, bone tissue undergoes significant compositional, architectural and metabolic alterations potentially leading to osteoporosis. Osteoporosis is the most prevalent bone disorder, which is characterised by progressive bone weakening and an increased risk of fragility fractures. Although this metabolic disease is conventionally associated with ageing and menopause, the predisposing factors are thought to be established during childhood and adolescence. In light of this, exercise interventions implemented during maturation are likely to be highly beneficial as part of a long-term strategy to maximise peak bone mass and hence delay the onset of age- or menopause-related osteoporosis. This notion is supported by data on exercise interventions implemented during childhood and adolescence, which confirmed that weight-bearing activity, particularly if undertaken during peripubertal development, is capable of generating a significant osteogenic response leading to bone anabolism. Recent work on human ageing and epigenetics suggests that undertaking exercise after the fourth decade of life is still important, given the anti-ageing effect and health benefits provided, potentially occurring via a delay in telomere shortening and modification of DNA methylation patterns associated with ageing. Exercise is among the primary modifiable factors capable of influencing bone health by preserving bone mass and strength, preventing the death of bone cells and anti-ageing action provided

    Novel features of the rotary catalytic mechanism revealed in the structure of yeast F(1) ATPase

    No full text
    The crystal structure of yeast mitochondrial F(1) ATPase contains three independent copies of the complex, two of which have similar conformations while the third differs in the position of the central stalk relative to the α(3)β(3) sub-assembly. All three copies display very similar asymmetric features to those observed for the bovine enzyme, but the yeast F(1) ATPase structures provide novel information. In particular, the active site that binds ADP in bovine F(1) ATPase has an ATP analog bound and therefore this structure does not represent the ADP-inhibited form. In addition, one of the complexes binds phosphate in the nucleotide-free catalytic site, and comparison with other structures provides a picture of the movement of the phosphate group during initial binding and subsequent catalysis. The shifts in position of the central stalk between two of the three copies of yeast F(1) ATPase and when these structures are compared to those of the bovine enzyme give new insight into the conformational changes that take place during rotational catalysis
    corecore