2 research outputs found

    Analysis of 21 autosomal STRs in Saudi Arabia reveals population structure and the influence of consanguinity

    No full text
    Variation in the 21 autosomal STRs detected by the GlobalFiler multiplex was investigated in a sample of 523 indigenous male Arabs from five geographic regions of Saudi Arabia. Although allele frequencies for the entire dataset were found to be broadly similar to those determined in previous studies of Saudi citizens, significant differences were found among regions. Heterozygote deficiency was observed at nearly all loci in all regions, probably as a consequence of high levels of consanguineous marriage; in the case of D2S1338, which showed the largest deviation from Hardy-Weinberg equilibrium, the presence of a null allele also played a part. Genetic distances were greatest between the Northern and Southern regions, whilst the West, Central and East appeared most similar to each other, and to previously published surveys. This contrasts with previously described variation among paternal lineages in the same sample-set: Y-chromosome variation was limited within the North/Central/South core compared with the more diverse East and West. Differences between autosomal and Y-chromosomal patterns may reflect genetic drift on the Y chromosome, exacerbated by prevalent patrilineal descent groups in different regions

    Massively parallel sequencing of sex-chromosomal STRs in Saudi Arabia reveals patrilineage-associated sequence variants

    No full text
    Massively parallel sequencing (MPS) of forensic STRs has the potential to reveal additional allele diversity compared to conventional capillary electrophoresis (CE) typing strategies, but population studies are currently relatively few in number. The Verogen ForenSeqâ„¢ DNA Signature Prep Kit includes both Y-STRs and X-STRs among its targeted loci, and here we report the sequences of these loci, analysed using Verogen's ForenSeqâ„¢ Universal Analysis Software (UAS) v1.3 and STRait Razor v3.0, in a representative sample of 89 Saudi Arabian males. We identified 56 length variants (equivalent to CE alleles) and 75 repeat sequence sub-variants across the six X-STRs analysed; equivalent figures for the set of 24 Y-STRs were 147 and 192 respectively. We also observed two flanking sequence variants for the X-, and six for the Y-STRs. Recovery of sequence data and concordance with CE data (where available) across the tested loci was good, though rare flanking variation affected interpretation and allele calling at DYF387S1 and DXS7132. Examination of flanking sequences of the Y-STRs revealed five SNPs (L255, M4790, BY7692, Z16708 and S17543) previously shown to define specific haplogroups by Y-chromosome sequencing. These define Y-haplogroups in 62 % of our sample, a proportion that increases to 91 % when haplogroup-associated repeat-sequence motifs are also considered. A population-level comparison of the Saudi Arabian X-STRs with a global sample showed our dataset to be part of a large cluster of populations of West Eurasian and Middle Eastern origin
    corecore