801 research outputs found

    Two-dimensional mapping of triaxial strain fields in a multiferroic BiFeO3 thin film using scanning x-ray microdiffraction

    Get PDF
    The dramatically enhanced polarizations and saturation magnetizations observed in the epitaxially constrained BiFeO3 (BFO) thin films with their pronounced grain-orientation dependence have attracted much attention and are attributed largely to the constrained in-plane strain. Thus, it is highly desirable to directly obtain information on the two-dimensional (2D) distribution of the in-plane strain and its correlation with the grain orientation of each corresponding microregion. Here the authors report a 2D quantitative mapping of the grain orientation and the local triaxial strain field in a 250 nm thick multiferroic BFO film using a synchrotron x-ray microdiffraction technique. This direct scanning measurement demonstrates that the deviatoric component of the in-plane strain tensor is between 5x10(-3) and 6x10(-3) and that the local triaxial strain is fairly well correlated with the grain orientation in that particular region. (c) 2007 American Institute of Physics.X1145Nsciescopu

    TLR9 regulates adipose tissue inflammation and obesity-related metabolic disorders

    Get PDF
    ObjectiveRecent studies have revealed a link between Toll-like receptor (TLR) signaling and the adipose tissue inflammation associated with obesity. Although TLR9 is known to play an important role in inflammation and innate immunity, its role in mediating adipose tissue inflammation has not yet been investigated. Thus, the objective of this study was to determine the role of TLR9 in regulating immune cells in visceral adipose tissue and maintaining the metabolic homeostasis. MethodsWild-type and TLR9-deficient mice were fed with a high-fat diet, and the body weight gain, glucose tolerance, insulin sensitivity, and adipose tissue inflammation were examined. ResultsTLR9-deficient mice gained significantly more weight and body fat under a high-fat diet than wild-type mice and exhibited more severe glucose intolerance and insulin resistance. We also found a dramatic increase of M1 macrophages as well as T(H)1 cells in the adipose tissue of TLR9-deficient mice compared to wild-type mice. Furthermore, the levels of various proinflammatory cytokines and chemokines were higher in TLR9-deficient mice. ConclusionsTLR9 signaling is involved in regulating adipose tissue inflammation and controlling obesity and the metabolic syndrome.1174Ysciescopu

    Biological potential of polyethylene glycol (Peg)-functionalized graphene quantum dots in in vitro neural stem/progenitor cells

    Get PDF
    Stem cell therapy is one of the novel and prospective fields. The ability of stem cells to differentiate into different lineages makes them attractive candidates for several therapies. It is essential to understand the cell fate, distribution, and function of transplanted cells in the local microenvironment before their applications. Therefore, it is necessary to develop an accurate and reliable labeling method of stem cells for imaging techniques to track their translocation after transplantation. The graphitic quantum dots (GQDs) are selected among various stem cell labeling and tracking strategies which have high photoluminescence ability, photostability, relatively low cytotoxicity, tunable surface functional groups, and delivering capacity. Since GQDs interact easily with the cell and interfere with cell behavior through surface functional groups, an appropriate surface modification needs to be considered to get close to the ideal labeling nanoprobes. In this study, polyethylene glycol (PEG) is used to improve biocompatibility while simultaneously maintaining the photoluminescent potentials of GQDs. The biochemically inert PEG successfully covered the surface of GQDs. The PEG-GQDs composites show adequate bioimaging capabilities when internalized into neural stem/progenitor cells (NSPCs). Furthermore, the bio-inertness of the PEG-GQDs is confirmed. Herein, we introduce the PEG-GQDs as a valuable tool for stem cell labeling and tracking for biomedical therapies in the field of neural regeneration

    Topology optimization for human proximal femur considering bi-modulus behavior of cortical bones

    Full text link
    © Springer International Publishing Switzerland 2015. The material in the human proximal femur is considered as bi-modulus material and the density distribution is predicted by topology optimization method. To reduce the computational cost, the bi-modulus material is replaced with two isotropic materials in simulation. The selection of local material modulus is determined by the previous local stress state. Compared with density prediction results by traditional isotropic material in proximal femur, the bi-modulus material layouts are different obviously. The results also demonstrate that the bi-modulus material model is better than the isotropic material model in simulation of density prediction in femur bone

    SH2 domains serve as lipid binding modules for pTyr-signaling proteins

    Get PDF
    The Src-homology 2 (SH2) domain is a protein interaction domain that directs myriad phosphotyrosine (pY)-signaling pathways. Genome-wide screening of human SH2 domains reveals that similar to 90% of SH2 domains bind plasma membrane lipids and many have high phosphoinositide specificity. They bind lipids using surface cationic patches separate from pY-binding pockets, thus binding lipids and the pY motif independently. The patches form grooves for specific lipid headgroup recognition or flat surfaces for non-specific membrane binding and both types of interaction are important for cellular function and regulation of SH2 domain-containing proteins. Cellular studies with ZAP70 showed that multiple lipids bind its C-terminal SH2 domain in a spatiotemporally specific manner and thereby exert exquisite spatiotemporal control over its protein binding and signaling activities in T cells. Collectively, this study reveals how lipids control SH2 domain-mediated cellular protein-protein interaction networks and suggest a new strategy for therapeutic modulation of pY-signaling pathways.112620Ysciescopu

    Slip-Flow and Heat Transfer of a Non-Newtonian Nanofluid in a Microtube

    Get PDF
    The slip-flow and heat transfer of a non-Newtonian nanofluid in a microtube is theoretically studied. The power-law rheology is adopted to describe the non-Newtonian characteristics of the flow, in which the fluid consistency coefficient and the flow behavior index depend on the nanoparticle volume fraction. The velocity profile, volumetric flow rate and local Nusselt number are calculated for different values of nanoparticle volume fraction and slip length. The results show that the influence of nanoparticle volume fraction on the flow of the nanofluid depends on the pressure gradient, which is quite different from that of the Newtonian nanofluid. Increase of the nanoparticle volume fraction has the effect to impede the flow at a small pressure gradient, but it changes to facilitate the flow when the pressure gradient is large enough. This remarkable phenomenon is observed when the tube radius shrinks to micrometer scale. On the other hand, we find that increase of the slip length always results in larger flow rate of the nanofluid. Furthermore, the heat transfer rate of the nanofluid in the microtube can be enhanced due to the non-Newtonian rheology and slip boundary effects. The thermally fully developed heat transfer rate under constant wall temperature and constant heat flux boundary conditions is also compared

    Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials

    Full text link
    Recent years witnessed a rapid growth of interest of scientific and engineering communities to thermal properties of materials. Carbon allotropes and derivatives occupy a unique place in terms of their ability to conduct heat. The room-temperature thermal conductivity of carbon materials span an extraordinary large range - of over five orders of magnitude - from the lowest in amorphous carbons to the highest in graphene and carbon nanotubes. I review thermal and thermoelectric properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder. A special attention is given to the unusual size dependence of heat conduction in two-dimensional crystals and, specifically, in graphene. I also describe prospects of applications of graphene and carbon materials for thermal management of electronics.Comment: Review Paper; 37 manuscript pages; 4 figures and 2 boxe

    Wearable high-performance pressure sensors based on three-dimensional electrospun conductive nanofibers

    Get PDF
    Polymer-based pressure sensors play a key role in realizing lightweight and inexpensive wearable devices for healthcare and environmental monitoring systems. Here, conductive core/shell polymer nanofibers composed of poly (vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP)/poly(3,4-ethylenedioxythiophene) (PEDOT) are fabricated using three-dimensional (3D) electrospinning and vapor deposition polymerization methods, and the resulting sponge-like 3D membranes are used to create piezoresistive-type pressure sensors. Interestingly, the PEDOT shell consists of well-dispersed spherical bumps, leading to the formation of a hierarchical conductive surface that enhances the sensitivity to external pressure. The sponge-like 3D mats exhibit a much higher pressure sensitivity than the conventional electrospun 2D mats due to their enhanced porosity and pressure-tunable contact area. Furthermore, large-area, wireless, 16 x 10 multiarray pressure sensors for the spatiotemporal mapping of multiple pressure points and wearable bands for monitoring blood pressure have been fabricated from these 3D mats. To the best of our knowledge, this is the first report of the fabrication of electrospun 3D membranes with nanoscopically engineered fibers that can detect changes in external pressure with high sensitivity. The developed method opens a new route to the mass production of polymer-based pressure sensors with high mechanical durability, which creates additional possibilities for the development of human-machine interfaces.11Ysciescopu

    Self-assembled three dimensional network designs for soft electronics.

    Get PDF
    Low modulus, compliant systems of sensors, circuits and radios designed to intimately interface with the soft tissues of the human body are of growing interest, due to their emerging applications in continuous, clinical-quality health monitors and advanced, bioelectronic therapeutics. Although recent research establishes various materials and mechanics concepts for such technologies, all existing approaches involve simple, two-dimensional (2D) layouts in the constituent micro-components and interconnects. Here we introduce concepts in three-dimensional (3D) architectures that bypass important engineering constraints and performance limitations set by traditional, 2D designs. Specifically, open-mesh, 3D interconnect networks of helical microcoils formed by deterministic compressive buckling establish the basis for systems that can offer exceptional low modulus, elastic mechanics, in compact geometries, with active components and sophisticated levels of functionality. Coupled mechanical and electrical design approaches enable layout optimization, assembly processes and encapsulation schemes to yield 3D configurations that satisfy requirements in demanding, complex systems, such as wireless, skin-compatible electronic sensors
    corecore