9 research outputs found

    Separability of neural responses to standardised mechanical stimulation of limbs

    Get PDF
    Abstract Considerable scientific and technological efforts are currently being made towards the development of neural prostheses. Understanding how the peripheral nervous system responds to electro-mechanical stimulation of the limb, will help to inform the design of prostheses that can restore function or accelerate recovery from injury to the sensory motor system. However, due to differences in experimental protocols, it is difficult, if not impossible, to make meaningful comparisons between different peripheral nerve interfaces. Therefore, we developed a low-cost electronic system to standardise the mechanical stimulation of a rat’s hindpaw. Three types of mechanical stimulations, namely, proprioception, touch and nociception were delivered to the limb and the electroneurogram signals were recorded simultaneously from the sciatic nerve with a 16-contact cuff electrode. For the first time, results indicate separability of neural responses according to stimulus type as well as intensity. Statistical analysis reveal that cuff contacts placed circumferentially, rather than longitudinally, are more likely to lead to higher classification rates. This flexible setup may be readily adapted for systematic comparison of various electrodes and mechanical stimuli in rodents. Hence, we have made its electro-mechanical design and computer programme available onlin

    Imaging fascicular organization of rat sciatic nerves with fast neural electrical impedance tomography

    Get PDF
    Imaging compound action potentials (CAPs) in peripheral nerves could help avoid side effects in neuromodulation by selective stimulation of identified fascicles. Existing methods have low resolution, limited imaging depth, or are invasive. Fast neural electrical impedance tomography (EIT) allows fascicular CAP imaging with a resolution of <200 µm, <1 ms using a non-penetrating flexible nerve cuff electrode array. Here, we validate EIT imaging in rat sciatic nerve by comparison to micro-computed tomography (microCT) and histology with fluorescent dextran tracers. With EIT, there are reproducible localized changes in tissue impedance in response to stimulation of individual fascicles (tibial, peroneal and sural). The reconstructed EIT images correspond to microCT scans and histology, with significant separation between the fascicles (p < 0.01). The mean fascicle position is identified with an accuracy of 6% of nerve diameter. This suggests fast neural EIT can reliably image the functional fascicular anatomy of the nerves and so aid selective neuromodulation

    Standardization of methods to record Vagus nerve activity in mice

    No full text
    Abstract Background The vagus nerve plays an important role in the regulation of organ function, including reflex pathways that regulate immunity and inflammation. Recent studies using genetically modified mice have improved our understanding of molecular mechanisms in the neural control of immunity. However, mapping neural signals transmitted in the vagus nerve in mice has been limited by technical challenges. Here, we have standardized an experimental protocol to record compound action potentials transmitted in the vagus nerve. Methods The vagus nerve was isolated in Balb/c and B6.129S mice, and placed either on a hook or cuff electrode. The electrical signals from the vagus nerve were digitized using either a Neuralynx or Plexon data acquisition system. Changes in the vagus nerve activity in response to anesthesia, feeding and administration of bacterial endotoxin were analyzed. Results We have developed an electrophysiological recording system to record compound action potentials from the cervical vagus nerve in mice. Cuff electrodes significantly reduce background noise and increase the signal to noise ratio as compared to hook electrodes. Baseline vagus nerve activity varies in response to anesthesia depth and food intake. Analysis of vagus neurograms in different mouse strains (Balb/c and C57BL/6) reveal no significant differences in baseline activity. Importantly, vagus neurogramactivity in wild type and TLR4 receptor knock out mice exhibits receptor dependency of endotoxin mediated signals. Conclusions These methods for recording vagus neurogram in mice provide a useful tool to further delineate the role of vagus neural pathways in a standardized murine disease model
    corecore