199 research outputs found

    A Comparison Between Chinese Children Infected with Coronavirus Disease-2019 and with Severe Acute Respiratory Syndrome 2003

    Get PDF
    OBJECTIVES: To compare the clinical and laboratory features of severe acute respiratory syndrome 2003 (SARS) and coronavirus disease 2019 (COVID-19) in two Chinese pediatric cohorts, given that the causative pathogens and are biologically similar. , STUDY DESIGN: This is a cross-sectional study reviewing paediatric patients with SARS (n = 43) and COVID-19 (n=244) who were admitted to the Princess Margaret Hospital in Hong Kong and Wuhan Children's Hospital in Wuhan, respectively. Demographics, hospital length of stay, clinical and laboratory features were compared RESULTS: Overall, 97.7% of patients with SARS and 85.2% of patients with COVID-19 had epidemiological associations with known cases. Significantly more patients with SARS developed fever, chills, myalgia, malaise, coryza, sore throat, sputum production, nausea, headache, and dizziness than patients COVID-19. No SARS patients were asymptomatic at the time of admission. 29.1% and 20.9% COVID-19 patients were asymptomatic on admission and throughout their hospital stay, respectively. More SARS patients required oxygen supplementation than COVID-19 patients (18.6 vs. 4.7%, P = 004). Only 1.6% COVID-19 and 2.3% SARS patients required mechanical ventilation. Leukopenia (37.2% vs. 18.6%, p=0.008), lymphopenia (95.4% versus 32.6%, p<0.01), and thrombocytopenia (41.9% vs 3.8%, p<0.001) were significantly more common in SARS than COVID-19 patients. The duration between positive and negative nasopharyngeal aspirate and the length in hospital stay were similar in COVID-19 patients regardless of whether they were asymptomatic or symptomatic, suggesting a similar duration of viral shedding. CONCLUSIONS: Children with COVID-19 were less symptomatic and had more favorable hematological findings than children with SARS

    The ligational behavior of a phenolic quinolyl hydrazone towards copper(II)- ions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The heterocyclic hydrazones constitute an important class of biologically active drug molecules. The hydrazones have also been used as herbicides, insecticides, nematocides, redenticides, and plant growth regulators as well as plasticizers and stabilizers for polymers. The importance of the phenolic quinolyl hydrazones arises from incorporating the quinoline ring with the phenolic compound; 2,4-dihydroxy benzaldehyde. Quinoline ring has therapeutic and biological activities whereas, phenols have antiseptic and disinfectants activities and are used in the preparation of dyes, bakelite and drugs. The present study is planned to check the effect of the counter anions on the type and geometry of the isolated copper(II)- complexes as well as the ligational behavior of the phenolic hydrazone; 4-[(2-(4,8-dimethylquinolin-2-yl)hydrazono)methyl] benzene-1,3-diol; (H<sub>2</sub>L).</p> <p>Results</p> <p>A phenolic quinolyl hydrazone (H<sub>2</sub>L) was allowed to react with various copper(II)- salts (Cl‾, Br‾, NO<sub>3</sub>‾, ClO<sub>4</sub>‾, AcO‾, SO<sub>4</sub><sup>2-</sup>). The reactions afforded dimeric complexes (ClO<sub>4</sub>‾, AcO‾ ), a binuclear complex (NO<sub>3</sub>‾ ) and mononuclear complexes (the others; Cl‾, Br‾, SO<sub>4</sub><sup>2-</sup>). The isolated copper(II)- complexes have octahedral, square pyramid and square planar geometries. Also, they reflect the strong coordinating ability of NO<sub>3</sub>‾, Cl‾, Br‾, AcO‾ and SO<sub>4</sub><sup>2- </sup>anions. Depending on the type of the anion, the ligand showed three different modes of bonding <it>viz</it>. (NN)<sup>0 </sup>for the mononuclear complexes (<b>3, 4, 6</b>), (NO)<sup>- </sup>with O- bridging for the dimeric complexes (<b>1, 5</b>) and a mixed mode [(NN)<sup>0 </sup>+ (NO)<sup>- </sup>with O- bridging] for the binuclear nitrato- complex (<b>2</b>).</p> <p>Conclusion</p> <p>The ligational behavior of the phenolic hydrazone (H<sub>2</sub>L) is highly affected by the type of the anion. The isolated copper(II)- complexes reflect the strong coordinating power of the SO<sub>4</sub><sup>2-</sup>, AcO‾, Br‾, Cl‾ and NO<sub>3</sub>‾ anions. Also, they reflect the structural diversity (octahedral, square pyramid and square planar) depending on the type of the counter anion.</p

    Vitamin A Enhances Antitumor Effect of a Green Tea Polyphenol on Melanoma by Upregulating the Polyphenol Sensing Molecule 67-kDa Laminin Receptor

    Get PDF
    BACKGROUND: Green tea consumption has been shown to have cancer preventive qualities. Among the constituents of green tea, (-)-Epigallocatechin-3-O-gallate (EGCG) is the most effective at inhibiting carcinogenesis. However, the concentrations of EGCG that are required to elicit the anticancer effects in a variety of cancer cell types are much higher than the peak plasma concentration that occurs after drinking an equivalent of 2-3 cups of green tea. To obtain the anticancer effects of EGCG when consumed at a reasonable concentration in daily life, we investigated the combination effect of EGCG and food ingredient that may enhance the anticancer activity of EGCG on subcutaneous tumor growth in C57BL/6N mice challenged with B16 melanoma cells. METHODOLOGY/PRINCIPAL FINDINGS: All-trans-retinoic acid (ATRA) enhanced the expression of the 67-kDa laminin receptor (67LR) and increased EGCG-induced cell growth inhibition in B16 melanoma cells. The cell growth inhibition seen with the combined EGCG and ATRA treatment was abolished by treatment with an anti-67LR antibody. In addition, the combined EGCG and ATRA treatment significantly suppressed the melanoma tumor growth in mice. Expression of 67LR in the tumor increased upon oral administration of ATRA or a combined treatment of EGCG and ATRA treatment. Furthermore, RNAi-mediated silencing of the retinoic acid receptor (RAR) alpha attenuated the ATRA-induced enhancement of 67LR expression in the melanoma cells. An RAR agonist enhanced the expression levels of 67LR and increased EGCG-induced cell growth inhibition. CONCLUSIONS/SIGNIFICANCE: Our findings provide a molecular basis for the combination effect seen with dietary components, and indicate that ATRA may be a beneficial food component for cancer prevention when combined with EGCG

    Adaptation of cortical activity to sustained pressure stimulation on the fingertip

    Get PDF
    Background Tactile adaptation is a phenomenon of the sensory system that results in temporal desensitization after an exposure to sustained or repetitive tactile stimuli. Previous studies reported psychophysical and physiological adaptation where perceived intensity and mechanoreceptive afferent signals exponentially decreased during tactile adaptation. Along with these studies, we hypothesized that somatosensory cortical activity in the human brain also exponentially decreased during tactile adaptation. The present neuroimaging study specifically investigated temporal changes in the human cortical responses to sustained pressure stimuli mediated by slow-adapting type I afferents. Methods We applied pressure stimulation for up to 15 s to the right index fingertip in 21 healthy participants and acquired functional magnetic resonance imaging (fMRI) data using a 3T MRI system. We analyzed cortical responses in terms of the degrees of cortical activation and inter-regional connectivity during sustained pressure stimulation. Results Our results revealed that the degrees of activation in the contralateral primary and secondary somatosensory cortices exponentially decreased over time and that intra- and inter-hemispheric inter-regional functional connectivity over the regions associated with tactile perception also linearly decreased or increased over time, during pressure stimulation. Conclusion These results indicate that cortical activity dynamically adapts to sustained pressure stimulation mediated by SA-I afferents, involving changes in the degrees of activation on the cortical regions for tactile perception as well as in inter-regional functional connectivity among them. We speculate that these adaptive cortical activity may represent an efficient cortical processing of tactile information.open

    Cadmium resistance in tobacco plants expressing the MuSI gene

    Get PDF
    MuSI, a gene that corresponds to a domain that contains the rubber elongation factor (REF), is highly homologous to many stress-related proteins in plants. Since MuSI is up-regulated in the roots of plants treated with cadmium or copper, the involvement of MuSI in cadmium tolerance was investigated in this study. Escherichia coli cells overexpressing MuSI were more resistant to Cd than wild-type cells transfected with vector alone. MuSI transgenic plants were also more resistant to Cd. MuSI transgenic tobacco plants absorbed less Cd than wild-type plants. Cd translocation from roots to shoots was reduced in the transgenic plants, thereby avoiding Cd toxicity. The number of short trichomes in the leaves of wild-type tobacco plants was increased by Cd treatment, while this was unchanged in MuSI transgenic tobacco. These results suggest that MuSI transgenic tobacco plants have enhanced tolerance to Cd via reduced Cd uptake and/or increased Cd immobilization in the roots, resulting in less Cd translocation to the shoots

    The association of RANTES polymorphism with severe acute respiratory syndrome in Hong Kong and Beijing Chinese

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chemokines play important roles in inflammation and antiviral action. We examined whether polymorphisms of <it>RANTES, IP-10 </it>and <it>Mig </it>affect the susceptibility to and outcome of severe acute respiratory syndrome (SARS).</p> <p>Methods</p> <p>We tested the polymorphisms of <it>RANTES, IP-10 </it>and <it>Mig </it>for their associations with SARS in 495 Hong Kong Chinese SARS patients and 578 controls. Then we tried to confirm the results in 356 Beijing Chinese SARS patients and 367 controls.</p> <p>Results</p> <p><it>RANTES </it>-28 G allele was associated with SARS susceptibility in Hong Kong Chinese (<it>P </it>< 0.0001, OR = 2.80, 95%CI:2.11–3.71). Individuals with <it>RANTES </it>-28 CG and GG genotypes had a 3.28-fold (95%CI:2.32–4.64) and 3.06-fold (95%CI:1.47–6.39) increased risk of developing SARS respectively (<it>P </it>< 0.0001). This -28 G allele conferred risk of death in a gene-dosage dependent manner (<it>P </it>= 0.014) with CG and GG individuals having a 2.12-fold (95% CI: 1.11–4.06) and 4.01-fold (95% CI: 1.30–12.4) increased risk. For the replication of <it>RANTES </it>data in Beijing Chinese, the -28 G allele was not associated with susceptibility to SARS. However, -28 CG (OR = 4.27, 95%CI:1.64–11.1) and GG (OR = 3.34, 95%CI:0.37–30.7) were associated with admission to intensive care units or death due to SARS (<it>P </it>= 0.011).</p> <p>Conclusion</p> <p><it>RANTES </it>-28 G allele plays a role in the pathogenesis of SARS.</p

    The interferon gamma gene polymorphism +874 A/T is associated with severe acute respiratory syndrome

    Get PDF
    BACKGROUND: Cytokines play important roles in antiviral action. We examined whether polymorphisms of IFN-γ,TNF-α and IL-10 affect the susceptibility to and outcome of severe acute respiratory syndrome (SARS). METHODS: A case-control study was carried out in 476 Chinese SARS patients and 449 healthy controls. We tested the polymorphisms of IFN-γ,TNF-α and IL-10 for their associations with SARS. RESULTS: IFN-γ +874A allele was associated with susceptibility to SARS in a dose-dependent manner (P < 0.001). Individuals with IFN-γ +874 AA and AT genotype had a 5.19-fold (95% Confidence Interval [CI], 2.78-9.68) and 2.57-fold (95% CI, 1.35-4.88) increased risk of developing SARS respectively. The polymorphisms of IL-10 and TNF-α were not associated with SARS susceptibility. CONCLUSION: IFN-γ +874A allele was shown to be a risk factor in SARS susceptibility

    The Arabidopsis Resistance-Like Gene SNC1 Is Activated by Mutations in SRFR1 and Contributes to Resistance to the Bacterial Effector AvrRps4

    Get PDF
    The SUPPRESSOR OF rps4-RLD1 (SRFR1) gene was identified based on enhanced AvrRps4-triggered resistance in the naturally susceptible Arabidopsis accession RLD. No other phenotypic effects were recorded, and the extent of SRFR1 involvement in regulating effector-triggered immunity was unknown. Here we show that mutations in SRFR1 in the accession Columbia-0 (Col-0) lead to severe stunting and constitutive expression of the defense gene PR1. These phenotypes were temperature-dependent. A cross between srfr1-1 (RLD background) and srfr1-4 (Col-0) showed that stunting was caused by a recessive locus in Col-0. Mapping and targeted crosses identified the Col-0-specific resistance gene SNC1 as the locus that causes stunting. SRFR1 was proposed to function as a transcriptional repressor, and SNC1 is indeed overexpressed in srfr1-4. Interestingly, co-regulated genes in the SNC1 cluster are also upregulated in the srfr1-4 snc1-11 double mutant, indicating that the overexpression of SNC1 is not a secondary effect of constitutive defense activation. In addition, a Col-0 RPS4 mutant showed full susceptibility to bacteria expressing avrRps4 at 24°C but not at 22°C, while RLD susceptibility was not temperature-dependent. The rps4-2 snc1-11 double mutant showed increased, but not full, susceptibility at 22°C, indicating that additional cross-talk between resistance pathways may exist. Intriguingly, when transiently expressed in Nicotiana benthamiana, SRFR1, RPS4 and SNC1 are in a common protein complex in a cytoplasmic microsomal compartment. Our results highlight SRFR1 as a convergence point in at least a subset of TIR-NBS-LRR protein-mediated immunity in Arabidopsis. Based on the cross-talk evident from our results, they also suggest that reports of constitutive resistance phenotypes in Col-0 need to consider the possible involvement of SNC1
    corecore