1,020 research outputs found
Tolerance of banana for fusarium wilt is associated with early H2O2 accumulation in the roots
Banana plants derived from a tissue culture process possess a high rate of random variations that were widely used as popular cultivars due to the new desired traits. In this study, two near-isogenic lines, one susceptible (parental Williams-8818) and the other resistant (somaclonal variation progeny Williams-8818-1 from Williams-8818) to Fusarium oxysporum f. sp. Cubense (Foc4), were inoculated with race 4 of F. oxysporum (Fox). Production of O2•− , H2O2 and MDA, as well as changes in enzyme activities, and transcript levels of SOD and CAT in root extracts were monitored every 24 h over 4 days. The histochemical location of H2O2 was also detected. In the resistant iso-line, the accumulation of O2•− and H2O2, and the activation of SOD occurred in the first 24 h, but activation of CAT reached its maximum only after 48 h. All changes were generally lower in the susceptible iso-line when compared to the resistant iso-line. SOD transcripts were further up-regulated until 72 h in the resistant iso-line, but not in the susceptible iso-line. CAT expression was not affected in any of the two iso-lines. This suggests that expressions of the two key genes in the antioxidant system are less suitable indicators for Foc resistance in banana. In contrast, the first “oxidative burst” is a better indicator for different susceptibility of banana to Foc.Key words: Banana, Fusarium oxysporum, catalase, reactive oxygen species, somaclonal variation, disease resistance
Prolonged exposure to bacterial toxins downregulated expression of toll-like receptors in mesenchymal stromal cell-derived osteoprogenitors
Background: Human mesenchymal stromal cells (MSCs, also known as mesenchymal stem cells) are multipotent cells with potential therapeutic value. Owing to their osteogenic capability, MSCs may be clinically applied for facilitating osseointegration in dental implants or orthopedic repair of bony defect. However, whether wound infection or oral microflora may interfere with the growth and osteogenic differentiation of human MSCs remains unknown. This study investigated whether proliferation and osteogenic differentiation of MSCs would be affected by potent gram-positive and gram-negative derived bacterial toxins commonly found in human settings. Results: We selected lipopolysaccharide (LPS) from Escherichia coli and lipoteichoic acid (LTA) from Streptococcus pyogenes as our toxins of choice. Our findings showed both LPS and LTA did not affect MSC proliferation, but prolonged LPS challenge upregulated the osteogenic differentiation of MSCs, as assessed by alkaline phosphatase activity and calcium deposition. Because toll-like receptors (TLRs), in particularly TLR4 and TLR2, are important for the cellular responsiveness to LPS and LTA respectively, we evaluated their expression profiles serially from MSCs to osteoblasts by quantitative PCR. We found that during osteogenic differentiation, MSC-derived osteoprogenitors gradually expressed TLR2 and TLR4 by Day 12. But under prolonged incubation with LPS, MSC-derived osteoprogenitors had reduced TLR2 and TLR4 gene expression. This peculiar response to LPS suggests a possible adaptive mechanism when MSCs are subjected to continuous exposure with bacteria. Conclusion: In conclusion, our findings support the potential of using human MSCs as a biological graft, even under a bacterial toxin-rich environment. © 2008 Mo et al; licensee BioMed Central Ltd.published_or_final_versio
Comparative Effects of Bone Char and NPK Agricultural Fertilizers on Hydrocarbon Utilizing Bacteria and Fungi in Crude Oil Polluted Soil
Bone char and NPK fertilizers are stimulants for bioremediation of crude oil polluted soil were investigated. Cells were constructed in-situ with dimensions of 1.5m by 1.5m. Crude oil samples were applied to cells with crude penetration depths of 30 cm. The hydrocarbon content (THC), total organic carbon (TOC), bacterial and fungal contents of the soils of the cells were investigated before and 8 weeks after addition of 0.5kg, 2kg and 3.5kg of bone char and NPK fertilizer. The control cells had no bone char or NPK fertilizer. The results showed that bone char and NPK fertilizer significantly reduced THC and TOC when compared with the control. Furthermore, both bone char and NPK fertilizers significantly increased the number of hydrocarbon utilizing bacteria and fungi as well as total heterotrophic bacteria population. Consequently, THC removal efficiency ranged from 62.24 to 87.74% and TOC removal efficiency ranged from 62.93 to 77.37% for NPK fertilizer and bone char amended cells, respectively. The stimulatory efficiency for THC ranged from 82.00 to 87.23% and stimulatory efficiency for TOC ranged from 72.40 to 77.55% for NPK and bone char respectively. In conclusion, our results suggest that the stimulatory effects of bone char for bioremediation of crude oil contaminated soil are comparative with those of NPK fertilizer
Ellagic acid, a phenolic compound, exerts anti-angiogenesis effects via VEGFR-2 signaling pathway in breast cancer
Anti-angiogenesis targeting VEGFR-2 has been considered as an important strategy for cancer therapy. Ellagic acid is a naturally existing polyphenol widely found in fruits and vegetables. It was reported that ellagic acid interfered with some angiogenesis-dependent pathologies. Yet the mechanisms involved were not fully understood. Thus, we analyzed its anti-angiogenesis effects and mechanisms on human breast cancer utilizing in-vitro and in-vivo methodologies. The in-silico analysis was also carried out to further analyze the structure-based interaction between ellagic acid and VEGFR-2. We found that ellagic acid significantly inhibited a series of VEGF-induced angiogenesis processes including proliferation, migration, and tube formation of endothelial cells. Besides, it directly inhibited VEGFR-2 tyrosine kinase activity and its downstream signaling pathways including MAPK and PI3K/Akt in endothelial cells. Ellagic acid also obviously inhibited neo-vessel formation in chick chorioallantoic membrane and sprouts formation of chicken aorta. Breast cancer xenografts study also revealed that ellagic acid significantly inhibited MDA-MB-231 cancer growth and P-VEGFR2 expression. Molecular docking simulation indicated that ellagic acid could form hydrogen bonds and aromatic interactions within the ATP-binding region of the VEGFR-2 kinase unit. Taken together, ellagic acid could exert anti-angiogenesis effects via VEGFR-2 signaling pathway in breast cancer. © 2012 The Author(s).published_or_final_versio
Ellipsometric spectra and growth of MgO thin films by pulsed laser deposition
2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Spectroellipsometric study of sol–gel derived potassium sodium strontium barium niobate films
Author name used in this publication: C. L. MakAuthor name used in this publication: B. LaiAuthor name used in this publication: K. H. WongAuthor name used in this publication: C. L. Choy2000-2001 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
The effects of nail rigidity on fracture healing in rats with osteoporosis
Background and purpose Stress shielding from rigid internal fixation may lead to refracture after removal of the osteosynthesis material. We investigated the effect of a low-rigidity (Ti-24Nb-4Zr-7.9Sn) intramedullary nail regarding stress shielding and bone healing of osteoporotic fractures in the rat
Ambipolar Field Effect in Topological Insulator Nanoplates of (BixSb1-x)2Te3
Topological insulators represent a new state of quantum matter attractive to
both fundamental physics and technological applications such as spintronics and
quantum information processing. In a topological insulator, the bulk energy gap
is traversed by spin-momentum locked surface states forming an odd number of
surface bands that possesses unique electronic properties. However, transport
measurements have often been dominated by residual bulk carriers from crystal
defects or environmental doping which mask the topological surface
contribution. Here we demonstrate (BixSb1-x)2Te3 as a tunable topological
insulator system to manipulate bulk conductivity by varying the Bi/Sb
composition ratio. (BixSb1-x)2Te3 ternary compounds are confirmed as
topological insulators for the entire composition range by angle resolved
photoemission spectroscopy (ARPES) measurements and ab initio calculations.
Additionally, we observe a clear ambipolar gating effect similar to that
observed in graphene using nanoplates of (BixSb1-x)2Te3 in
field-effect-transistor (FET) devices. The manipulation of carrier type and
concentration in topological insulator nanostructures demonstrated in this
study paves the way for implementation of topological insulators in
nanoelectronics and spintronics.Comment: 7 pages, 4 figure
Anyonic interferometry and protected memories in atomic spin lattices
Strongly correlated quantum systems can exhibit exotic behavior called
topological order which is characterized by non-local correlations that depend
on the system topology. Such systems can exhibit remarkable phenomena such as
quasi-particles with anyonic statistics and have been proposed as candidates
for naturally fault-tolerant quantum computation. Despite these remarkable
properties, anyons have never been observed in nature directly. Here we
describe how to unambiguously detect and characterize such states in recently
proposed spin lattice realizations using ultra-cold atoms or molecules trapped
in an optical lattice. We propose an experimentally feasible technique to
access non-local degrees of freedom by performing global operations on trapped
spins mediated by an optical cavity mode. We show how to reliably read and
write topologically protected quantum memory using an atomic or photonic qubit.
Furthermore, our technique can be used to probe statistics and dynamics of
anyonic excitations.Comment: 14 pages, 6 figure
- …