21 research outputs found

    Differential attraction and repulsion of Staphylococcus aureus and Pseudomonas aeruginosa on molecularly smooth titanium films

    Get PDF
    Magnetron sputtering techniques were used to prepare molecularly smooth titanium thin films possessing an average roughness between 0.18 nm and 0.52 nm over 5 ÎŒm × 5 ÎŒm AFM scanning areas. Films with an average roughness of 0.52 nm or lower were found to restrict the extent of P. aeruginosa cell attachment, with less than 0.5% of all available cells being retained on the surface. The attachment of S. aureus cells was also limited on films with an average surface roughness of 0.52 nm, however they exhibited a remarkable propensity for attachment on the nano-smoother 0.18 nm average surface roughness films, with the attachment density being almost twice as great as that observed on the nano-rougher film. The difference in attachment behaviour can be attributed to the difference in morphology of the rod-shaped P. aeruginosa compared to the spherical S. aureus cells

    An improved surface passivation method for single-molecule studies

    No full text
    We report a surface passivation method based on dichlorodimethylsilane (DDS)-Tween-20 for in vitro single-molecule studies, which, under the conditions tested here, more efficiently prevented nonspecific binding of biomolecules than the standard poly (ethylene glycol) surface. The DDS-Tween-20 surface was simple and inexpensive to prepare and did not perturb the behavior and activities of tethered biomolecules. It can also be used for single-molecule imaging in the presence of high concentrations of labeled species in solution.close
    corecore