31 research outputs found

    Intrinsic Structural Disorder Confers Cellular Viability on Oncogenic Fusion Proteins

    Get PDF
    Chromosomal translocations, which often generate chimeric proteins by fusing segments of two distinct genes, represent the single major genetic aberration leading to cancer. We suggest that the unifying theme of these events is a high level of intrinsic structural disorder, enabling fusion proteins to evade cellular surveillance mechanisms that eliminate misfolded proteins. Predictions in 406 translocation-related human proteins show that they are significantly enriched in disorder (43.3% vs. 20.7% in all human proteins), they have fewer Pfam domains, and their translocation breakpoints tend to avoid domain splitting. The vicinity of the breakpoint is significantly more disordered than the rest of these already highly disordered fusion proteins. In the unlikely event of domain splitting in fusion it usually spares much of the domain or splits at locations where the newly exposed hydrophobic surface area approximates that of an intact domain. The mechanisms of action of fusion proteins suggest that in most cases their structural disorder is also essential to the acquired oncogenic function, enabling the long-range structural communication of remote binding and/or catalytic elements. In this respect, there are three major mechanisms that contribute to generating an oncogenic signal: (i) a phosphorylation site and a tyrosine-kinase domain are fused, and structural disorder of the intervening region enables intramolecular phosphorylation (e.g., BCR-ABL); (ii) a dimerisation domain fuses with a tyrosine kinase domain and disorder enables the two subunits within the homodimer to engage in permanent intermolecular phosphorylations (e.g., TFG-ALK); (iii) the fusion of a DNA-binding element to a transactivator domain results in an aberrant transcription factor that causes severe misregulation of transcription (e.g. EWS-ATF). Our findings also suggest novel strategies of intervention against the ensuing neoplastic transformations

    Mactinin, a fragment of cytoskeletal α-actinin, is a novel inducer of heat shock protein (Hsp)-90 mediated monocyte activation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monocytes, their progeny such as dendritic cells and osteoclasts and products including tumor necrosis factor (TNF)-α, interleukin (IL)-1α and IL-1β play important roles in cancer, inflammation, immune response and atherosclerosis. We previously showed that mactinin, a degradative fragment of the cytoskeletal protein α-actinin, is present at sites of monocytic activation in vivo, has chemotactic activity for monocytes and promotes monocyte/macrophage maturation. We therefore sought to determine the mechanism by which mactinin stimulates monocytes.</p> <p>Results</p> <p>Radiolabeled mactinin bound to a heterocomplex on monocytes comprised of at least 3 proteins of molecular weight 88 kD, 79 kD and 68 kD. Affinity purification, mass spectroscopy and Western immunoblotting identified heat shock protein (Hsp)-90 as the 88 kD component of this complex. Hsp90 was responsible for mediating the functional effects of mactinin on monocytes, since Hsp90 inhibitors (geldanamycin and its analogues 17-allylamino-17-demethoxygeldanamycin [17-AAG] and 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin [17-DMAG]) almost completely abrogated the stimulatory activity of mactinin on monocytes (production of the pro-inflammatory cytokines IL-1α, IL-1β and TNF-α, as well as monocyte chemotaxis).</p> <p>Conclusion</p> <p>Mactinin is a novel inducer of Hsp90 activity on monocytes and may serve to perpetuate and augment monocytic activation, thereby functioning as a "matrikine." Blockage of this function of mactinin may be useful in diseases where monocyte/macrophage activation and/or Hsp90 activity are detrimental.</p

    Nanotechnology tackles tumours

    No full text

    Synthesis of 19-substituted geldanamycins with altered conformations and their binding to heat shock protein Hsp90

    No full text
    The benzoquinone ansamycin geldanamycin and its derivatives are inhibitors of heat shock protein Hsp90, an emerging target for novel therapeutic agents both in cancer and in neurodegeneration. However, the toxicity of these compounds to normal cells has been ascribed to reaction with thiol nucleophiles at the quinone 19-position. We reasoned that blocking this position would ameliorate toxicity, and that it might also enforce a favourable conformational switch of the trans-amide group into the cis-form required for protein binding. Here, we report an efficient synthesis of such 19-substituted compounds and realization of our hypotheses. Protein crystallography established that the new compounds bind to Hsp90 with, as expected, a cis-amide conformation. Studies on Hsp90 inhibition in cells demonstrated the molecular signature of Hsp90 inhibitors: decreases in client proteins with compensatory increases in other heat shock proteins in both human breast cancer and dopaminergic neural cells, demonstrating their potential for use in the therapy of cancer or neurodegenerative diseases
    corecore