9 research outputs found

    The influence of triangular silver nanoplates on antimicrobial activity and color of cotton fabrics pretreated with chitosan

    No full text
    The effect of cotton fabric pretreatment with biopolymer chitosan (CHT) on deposition of colloidal triangular silver nanoplates was studied. Also, the influence of deposited silver nanoparticles on color and antimicrobial activity of cotton fabrics was evaluated. Characterization of colloidal silver nanoparticles as well as silver nanoparticles deposited on cotton fabrics was performed using electron microscopy (TEM and FESEM), XRD analysis, atomic absorption spectroscopy, UV-Vis absorption, and reflectance spectroscopy. The cotton fabric turned from white to blue color upon deposition of triangular silver nanoplates. Antimicrobial activity of CHT pretreated cotton fabric impregnated with silver nanoparticles was tested against Gram-negative bacteria Escherichia coli, Gram-positive bacteria Staphylococcus aureus, and fungi Candida albicans. Deposited silver nanoparticles imparted excellent antimicrobial properties to cotton fabric. The standard sterilization procedure of cotton fabric for antimicrobial activity testing resulted in color change of the fabric from blue to yellow. This color change is most likely consequence of transformation of triangular silver nanoplates into nanodiscs and/or their agglomeration into spheroids

    The Interactomes of Influenza Virus NS1 and NS2 Proteins Identify New Host Factors and Provide Insights for ADAR1 Playing a Supportive Role in Virus Replication.

    Get PDF
    Influenza A NS1 and NS2 proteins are encoded by the RNA segment 8 of the viral genome. NS1 is a multifunctional protein and a virulence factor while NS2 is involved in nuclear export of viral ribonucleoprotein complexes. A yeast two-hybrid screening strategy was used to identify host factors supporting NS1 and NS2 functions. More than 560 interactions between 79 cellular proteins and NS1 and NS2 proteins from 9 different influenza virus strains have been identified. These interacting proteins are potentially involved in each step of the infectious process and their contribution to viral replication was tested by RNA interference. Validation of the relevance of these host cell proteins for the viral replication cycle revealed that 7 of the 79 NS1 and/or NS2-interacting proteins positively or negatively controlled virus replication. One of the main factors targeted by NS1 of all virus strains was double-stranded RNA binding domain protein family. In particular, adenosine deaminase acting on RNA 1 (ADAR1) appeared as a pro-viral host factor whose expression is necessary for optimal viral protein synthesis and replication. Surprisingly, ADAR1 also appeared as a pro-viral host factor for dengue virus replication and directly interacted with the viral NS3 protein. ADAR1 editing activity was enhanced by both viruses through dengue virus NS3 and influenza virus NS1 proteins, suggesting a similar virus-host co-evolution.Journal Articleinfo:eu-repo/semantics/publishe

    The NS1 Protein: A Multitasking Virulence Factor

    No full text

    Enzyme Handbook

    No full text
    corecore