7 research outputs found
Quaternary bimodal volcanism in the Niğde Volcanic Complex (Cappadocia, central Anatolia, Turkey): age, petrogenesis and geodynamic implications
The late Neogene to Quaternary Cappadocian Volcanic Province (CVP) in central Anatolia is one of the most impressive volcanic fields of Turkey because of its extent and spectacular erosionally sculptured landscape. The late Neogene evolution of the CVP started with the eruption of extensive andesitic-dacitic lavas and ignimbrites with minor basaltic lavas. This stage was followed by Quaternary bimodal volcanism. Here, we present geochemical, isotopic (Sr-Nd-Pb and delta O-18 isotopes) and geochronological (U-Pb zircon and Ar-Ar amphibole and whole-rock ages) data for bimodal volcanic rocks of the Ni g de Volcanic Complex (NVC) in the western part of the CVP to determine mantle melting dynamics and magmatic processes within the overlying continental crust during the Quaternary. Geochronological data suggest that the bimodal volcanic activity in the study area occurred between ca. 1.1 and ca. 0.2 Ma (Pleistocene) and comprises (1) mafic lavas consisting of basalts, trachybasalts, basaltic andesites and scoria lapilli fallout deposits with mainly basaltic composition, (2) felsic lavas consisting of mostly rhyolites and pumice lapilli fall-out and surge deposits with dacitic to rhyolitic composition. The most mafic sample is basalt from a monogenetic cone, which is characterized by Sr-87/Sr-86 = 0.7038, Nd-143/Nd-144 = 0.5128, Pb-206/Pb-204 = 18.80, Pb-207/Pb-204 = 15.60 and Pb-208/Pb-204 = 38.68, suggesting a moderately depleted signature of the mantle source. Felsic volcanic rocks define a narrow range of Nd-143/Nd-144 isotope ratios (0.5126-0.5128) and are homogeneous in Pb isotope composition (Pb-206/Pb-204 = 18.84-18.87, Pb-207/Pb-204 = 15.64-15.67 and Pb-208/Pb-204 = 38.93-38.99). Sr-87/Sr-86 isotopic compositions of mafic (0.7038-0.7053) and felsic (0.7040-0.7052) samples are similar, reflecting a common mantle source. The felsic rocks have relatively low zircon delta O-18 values (5.6 +/- 0.6 %) overlapping mantle values (5.3 +/- 0.3 %), consistent with an origin by fractional crystallization from a mafic melt with very minor continental crustal contamination. The geochronological and geochemical data suggest that mafic and felsic volcanic rocks of the NVC are genetically closely related to each other. Mafic rocks show a positive trend between Sr-87/Sr-86 and Th, suggesting simultaneous assimilation and fractional crystallization, whereas the felsic rocks are characterized by a flat or slightly negative variation. High Sr-87/Sr-86 gneisses are a potential crustal contaminant of the mafic magmas, but the comparatively low and invariant Sr-87/Sr-86 in the felsic volcanics suggests that these evolved dominantly by fractional crystallization. Mantle-derived basaltic melts, which experienced low degree of crustal assimilation, are proposed to be the parent melt of the felsic volcanics. Geochronological and geochemical results combined with regional geological and geophysical data suggest that bimodal volcanism of the NVC and the CVP, in general, developed in a post-collisional extensional tectonic regime that is caused by ascending asthenosphere, which played a key role during magma genesis
Neotethyan closure history of western Anatolia: a geodynamic discussion
International audienceThis paper addresses the lithosphere-scale subduction–collision history of the eastern termination of the Aegean retreating subduction system, i.e. western Anatolia. Although there is some general consensus on the protracted subduction evolution of the Aegean since the early Cenozoic at least, correlation with western Anatolia has been widely debated for more than several decades. In western Anatolia, three main tectonic configurations have been envisaged in the past years to reconstruct slab dynamics during the closure of the Neotethyan oceanic realm since the Late Cretaceous. Some authors have suggested an Aegean-type scenario, with the continuous subduction of a single lithospheric slab, punctuated by episodic slab roll-back and trench retreat, whereas others assumed a discontinuous subduction history marked by intermittent slab break-off during either the Campanian (ca. 75 Ma) or the Early Eocene (ca. 55–50 Ma). The third view implies three partly contemporaneous subduction zones. Our review of these models points to key debated aspects that can be re-evaluated in the light of multidisciplinary constraints from the literature. Our discussion leads us to address the timing of subduction initiation, the existence of hypothetical ocean basins, the number of intervening subduction zones between the Taurides and the Pontides, the palaeogeographic origin of tectonic units and the possibility for slab break-off during either the Campanian or the Early Eocene. Thence, we put forward a favoured tectonic scenario featuring two successive phases of subduction of a single lithospheric slab and episodic accretion of two continental domains separated by a continental trough, representing the eastern end of the Cycladic Ocean of the Aegean. The lack of univocal evidence for slab break-off in western Anatolia and southward-younging HP/LT metamorphism in continental tectonic units (from ~85, 70 to 50 Ma) in the Late Cretaceous–Palaeogene period suggests continuous subduction since ~110 Ma, marked by roll-back episodes in the Palaeocene and the Oligo-Miocene, and slab tearing below western Anatolia during the Miocene