182 research outputs found

    Gate controlled electronic transport in monolayer MoS2 field effect transistor

    Get PDF
    published_or_final_versio

    Elastic differential evolution for automatic data clustering

    Get PDF
    In many practical applications, it is crucial to perform automatic data clustering without knowing the number of clusters in advance. The evolutionary computation paradigm is good at dealing with this task, but the existing algorithms encounter several deficiencies, such as the encoding redundancy and the cross-dimension learning error. In this article, we propose a novel elastic differential evolution algorithm to solve automatic data clustering. Unlike traditional methods, the proposed algorithm considers each clustering layout as a whole and adapts the cluster number and cluster centroids inherently through the variable-length encoding and the evolution operators. The encoding scheme contains no redundancy. To enable the individuals of different lengths to exchange information properly, we develop a subspace crossover and a two-phase mutation operator. The operators employ the basic method of differential evolution and, in addition, they consider the spatial information of cluster layouts to generate offspring solutions. Particularly, each dimension of the parameter vector interacts with its correlated dimensions, which not only adapts the cluster number but also avoids the cross-dimension learning error. The experimental results show that our algorithm outperforms the state-of-the-art algorithms that it is able to identify the correct number of clusters and obtain a good cluster validation value

    Mth10b, a Unique Member of the Sac10b Family, Does Not Bind Nucleic Acid

    Get PDF
    The Sac10b protein family is regarded as a group of nucleic acid-binding proteins that are highly conserved and widely distributed within archaea. All reported members of this family are basic proteins that exist as homodimers in solution and bind to DNA and/or RNA without apparent sequence specificity in vitro. Here, we reported a unique member of the family, Mth10b from Methanobacterium thermoautotrophicum ΔH, whose amino acid sequence shares high homology with other Sac10b family proteins. However, unlike those proteins, Mth10b is an acidic protein; its potential isoelectric point is only 4.56, which is inconsistent with the characteristics of a nucleic acid-binding protein. In this study, Mth10b was expressed in Escherichia coli and purified using a three-column chromatography purification procedure. Biochemical characterization indicated that Mth10b should be similar to typical Sac10b family proteins with respect to its secondary and tertiary structure and in its preferred oligomeric forms. However, an electrophoretic mobility shift analysis (EMSA) showed that neither DNA nor RNA bound to Mth10b in vitro, indicating that either Mth10b likely has a physiological function that is distinct from those of other Sac10b family members or nucleic acid-binding ability may not be a fundamental factor to the actual function of the Sac10b family

    Acid Solution Is a Suitable Medium for Introducing QX-314 into Nociceptors through TRPV1 Channels to Produce Sensory-Specific Analgesic Effects

    Get PDF
    BACKGROUND: Previous studies have demonstrated that QX-314, an intracellular sodium channel blocker, can enter into nociceptors through capsaicin-activated TRPV1 or permeation of the membrane by chemical enhancers to produce a sensory-selective blockade. However, the obvious side effects of these combinations limit the application of QX-314. A new strategy for targeting delivery of QX-314 into nociceptors needs further investigation. The aim of this study is to test whether acidic QX-314, when dissolves in acidic solution directly, can enter into nociceptors through acid-activated TRPV1 and block sodium channels from the intracellular side to produce a sensory-specific analgesic effect. METHODOLOGY/PRINCIPAL FINDINGS: Acidic solution or noradrenaline was injected intraplantarly to induce acute pain behavior in mice. A chronic constrictive injury model was performed to induce chronic neuropathic pain. A sciatic nerve blockade model was used to evaluate the sensory-specific analgesic effects of acidic QX-314. Thermal and mechanical hyperalgesia were measured by using radiant heat and electronic von Frey filaments test. Spinal Fos protein expression was determined by immunohistochemistry. The expression of p-ERK was detected by western blot assay. Whole cell clamp recording was performed to measure action potentials and total sodium current in rats DRG neurons. We found that pH 5.0 PBS solution induced behavioral hyperalgesia accompanied with the increased expression of spinal Fos protein and p-ERK. Pretreatment with pH 5.0 QX-314, and not pH 7.4 QX-314, alleviated pain behavior, inhibited the increased spinal Fos protein and p-ERK expression induced by pH 5.0 PBS or norepinephrine, blocked sodium currents and abolished the production of action potentials evoked by current injection. The above effects were prevented by TRPV1 channel inhibitor SB366791, but not by ASIC channel inhibitor amiloride. Furthermore, acidic QX-314 employed adjacent to the sciatic nerve selectively blocked the sensory but not the motor functions in naïve and CCI mice. CONCLUSIONS/SIGNIFICANCE: Acid solution is a suitable medium for introducing QX-314 into nociceptors through TRPV1 channels to produce a sensory-specific analgesic effect

    MiR-133a in Human Circulating Monocytes: A Potential Biomarker Associated with Postmenopausal Osteoporosis

    Get PDF
    Background: Osteoporosis mainly occurs in postmenopausal women, which is characterized by low bone mineral density (BMD) due to unbalanced bone resorption by osteoclasts and formation by osteoblasts. Circulating monocytes play important roles in osteoclastogenesis by acting as osteoclast precursors and secreting osteoclastogenic factors, such as IL-1, IL-6 and TNF-a. MicroRNAs (miRNAs) have been implicated as important biomarkers in various diseases. The present study aimed to find significant miRNA biomarkers in human circulating monocytes underlying postmenopausal osteoporosis. Methodology/Principal Findings: We used ABI TaqManH miRNA array followed by qRT-PCR validation in circulating monocytes to identify miRNA biomarkers in 10 high and 10 low BMD postmenopausal Caucasian women. MiR-133a was upregulated (P = 0.007) in the low compared with the high BMD groups in the array analyses, which was also validated by qRT-PCR (P = 0.044). We performed bioinformatic target gene analysis and found three potential osteoclast-related target genes, CXCL11, CXCR3 and SLC39A1. In addition, we performed Pearson correlation analyses between the expression levels of miR-133a and the three potential target genes in the 20 postmenopausal women. We did find negative correlations between miR-133a and all the three genes though not significant. Conclusions/Significance: This is the first in vivo miRNA expression analysis in human circulating monocytes to identif

    A Classification Method Based on Principal Components of SELDI Spectra to Diagnose of Lung Adenocarcinoma

    Get PDF
    Lung cancer is the leading cause of cancer death worldwide, but techniques for effective early diagnosis are still lacking. Proteomics technology has been applied extensively to the study of the proteins involved in carcinogenesis. In this paper, a classification method was developed based on principal components of surface-enhanced laser desorption/ionization (SELDI) spectral data. This method was applied to SELDI spectral data from 71 lung adenocarcinoma patients and 24 healthy individuals. Unlike other peak-selection-based methods, this method takes each spectrum as a unity. The aim of this paper was to demonstrate that this unity-based classification method is more robust and powerful as a method of diagnosis than peak-selection-based methods.The results showed that this classification method, which is based on principal components, has outstanding performance with respect to distinguishing lung adenocarcinoma patients from normal individuals. Through leaving-one-out, 19-fold, 5-fold and 2-fold cross-validation studies, we found that this classification method based on principal components completely outperforms peak-selection-based methods, such as decision tree, classification and regression tree, support vector machine, and linear discriminant analysis.The classification method based on principal components of SELDI spectral data is a robust and powerful means of diagnosing lung adenocarcinoma. We assert that the high efficiency of this classification method renders it feasible for large-scale clinical use

    Enhancing Production of Bio-Isoprene Using Hybrid MVA Pathway and Isoprene Synthase in E. coli

    Get PDF
    The depleting petroleum reserve, increasingly severe energy crisis, and global climate change are reigniting enthusiasm for seeking sustainable technologies to replace petroleum as a source of fuel and chemicals. In this paper, the efficiency of the MVA pathway on isoprene production has been improved as follows: firstly, in order to increase MVA production, the source of the “upper pathway” which contains HMG-CoA synthase, acetyl-CoA acetyltransferase and HMG-CoA reductase to covert acetyl-CoA into MVA has been changed from Saccharomyces cerevisiae to Enterococcus faecalis; secondly, to further enhance the production of MVA and isoprene, a alanine 110 of the mvaS gene has been mutated to a glycine. The final genetic strain YJM25 containing the optimized MVA pathway and isoprene synthase from Populus alba can accumulate isoprene up to 6.3 g/L after 40 h of fed-batch cultivation

    Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells

    Get PDF
    available in PMC 2011 November 01.Cellular RNA levels are determined by the interplay of RNA production, processing and degradation. However, because most studies of RNA regulation do not distinguish the separate contributions of these processes, little is known about how they are temporally integrated. Here we combine metabolic labeling of RNA at high temporal resolution with advanced RNA quantification and computational modeling to estimate RNA transcription and degradation rates during the response of mouse dendritic cells to lipopolysaccharide. We find that changes in transcription rates determine the majority of temporal changes in RNA levels, but that changes in degradation rates are important for shaping sharp 'peaked' responses. We used sequencing of the newly transcribed RNA population to estimate temporally constant RNA processing and degradation rates genome wide. Degradation rates vary significantly between genes and contribute to the observed differences in the dynamic response. Certain transcripts, including those encoding cytokines and transcription factors, mature faster. Our study provides a quantitative approach to study the integrative process of RNA regulation.Human Frontier Science Program (Strasbourg, France)Howard Hughes Medical InstituteBurroughs Wellcome Fund (Career Award at the Scientific Interface

    Alterations in Epithelial and Mesenchymal Intestinal Gene Expression During Doxorubicin-Induced Mucositis in Mice

    Get PDF
    In the current study we aimed to gain insight into epithelial-mesenchymal cross-talk and progenitor compartment modulation during doxorubicin (DOX)-induced mucositis in mice. Intestinal segments were collected on various days after DOX treatment. DOX-induced damage at day 1–2 was characterized by increased epithelial proliferation and apoptosis and a decrease in the expression of epithelial differentiation markers. Concurrently, T-cell factor-4 (TCF4) levels increased and the epithelial differentiation enhancing factor, bone morphogenic protein-4 (BMP4), decreased. During severe damage (day 3), BMP4 levels were significantly increased, which inversely correlated with epithelial proliferation. At the same time, the expression of the epithelial differentiation markers was increasing again. At day 7, BMP4 levels were down-regulated, while the levels of the epithelial differentiation markers and TCF4 were normalized again. These data suggest that in response to DOX-induced damage, BMP4 and TCF4 are modulated in such a way that homeostasis of the progenitor compartment is partly preserved
    corecore