21 research outputs found

    Identifying TNF and IL6 as potential hub genes and targeted drugs associated with scleritis: A bio-informative report

    Get PDF
    BackgroundScleritis is a serious inflammatory eye disease that can lead to blindness. The etiology and pathogenesis of scleritis remain unclear, and increasing evidence indicates that some specific genes and proteins are involved. This study aimed to identify pivotal genes and drug targets for scleritis, thus providing new directions for the treatment of this disease.MethodsWe screened candidate genes and proteins associated with scleritis by text-mining the PubMed database using Python, and assessed their functions by using the DAVID database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to identify the functional enrichment of these genes and proteins. Then, the hub genes were identified with CytoHubba and assessed by protein-protein interaction (PPI) network analysis. And the serum from patients with active scleritis and healthy subjects were used for the validation of hub genes. Finally, the DGIdb database was used to predict targeted drugs for the hub genes for treating scleritis.ResultsA total of 56 genes and proteins were found to be linked to scleritis, and 65 significantly altered pathways were identified in the KEGG analysis (FDR < 0.05). Most of the top five pathways involved the categories “Rheumatoid arthritis,” “Inflammatory bowel disease”, “Type I diabetes mellitus,” and “Graft-versus-host disease”. TNF and IL6 were considered to be the top 2 hub genes through CytoHubba. Based on our serum samples, hub genes are expressed at high levels in active scleritis. Five scleritis-targeting drugs were found among 88 identified drugs.ConclusionsThis study provides key genes and drug targets related to scleritis through bioinformatics analysis. TNF and IL6 are considered key mediators and possible drug targets of scleritis. Five drug candidates may play an important role in the diagnosis and treatment of scleritis in the future, which is worthy of the further experimental and clinical study

    A Novel Bearing Fault Diagnosis Method Based on Few-Shot Transfer Learning across Different Datasets

    No full text
    At present, the success of most intelligent fault diagnosis methods is heavily dependent on large datasets of artificial simulation faults (ASF), which have not been widely used in practice because it is often costly to obtain a large number of samples in reality. Fortunately, various faults can be easily simulated in the laboratory, and these simulated faults contain a lot of fault diagnosis knowledge. In this study, based on a Siamese network framework, we propose a bearing fault diagnosis based on few-shot transfer learning across different datasets (cross-machine), using the knowledge of ASF to diagnose bearings with natural faults (NF). First of all, the model obtains a good feature encoder in the source domain, then defines a fault support set for comparison, and finally adjusts the support set with a very small number of target domain samples to improve the fault diagnosis performance of the model. We carried out experimental verification from many aspects on the ASF and NF datasets provided by Case Western Reserve University (CWRU) and Paderborn University (PU). The results show that the proposed method can fully learn diagnostic knowledge in different ASF datasets and sample numbers, and effectively use this knowledge to accurately identify the health state of the NF bearing, which has strong generalization and robustness. Our method does not need second training, which may be more convenient in some practical applications. Finally, we also discuss the possible limitations of this method

    Table_2_Identifying TNF and IL6 as potential hub genes and targeted drugs associated with scleritis: A bio-informative report.docx

    No full text
    BackgroundScleritis is a serious inflammatory eye disease that can lead to blindness. The etiology and pathogenesis of scleritis remain unclear, and increasing evidence indicates that some specific genes and proteins are involved. This study aimed to identify pivotal genes and drug targets for scleritis, thus providing new directions for the treatment of this disease.MethodsWe screened candidate genes and proteins associated with scleritis by text-mining the PubMed database using Python, and assessed their functions by using the DAVID database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to identify the functional enrichment of these genes and proteins. Then, the hub genes were identified with CytoHubba and assessed by protein-protein interaction (PPI) network analysis. And the serum from patients with active scleritis and healthy subjects were used for the validation of hub genes. Finally, the DGIdb database was used to predict targeted drugs for the hub genes for treating scleritis.ResultsA total of 56 genes and proteins were found to be linked to scleritis, and 65 significantly altered pathways were identified in the KEGG analysis (FDR ConclusionsThis study provides key genes and drug targets related to scleritis through bioinformatics analysis. TNF and IL6 are considered key mediators and possible drug targets of scleritis. Five drug candidates may play an important role in the diagnosis and treatment of scleritis in the future, which is worthy of the further experimental and clinical study.</p

    Image_1_Identifying TNF and IL6 as potential hub genes and targeted drugs associated with scleritis: A bio-informative report.tif

    No full text
    BackgroundScleritis is a serious inflammatory eye disease that can lead to blindness. The etiology and pathogenesis of scleritis remain unclear, and increasing evidence indicates that some specific genes and proteins are involved. This study aimed to identify pivotal genes and drug targets for scleritis, thus providing new directions for the treatment of this disease.MethodsWe screened candidate genes and proteins associated with scleritis by text-mining the PubMed database using Python, and assessed their functions by using the DAVID database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to identify the functional enrichment of these genes and proteins. Then, the hub genes were identified with CytoHubba and assessed by protein-protein interaction (PPI) network analysis. And the serum from patients with active scleritis and healthy subjects were used for the validation of hub genes. Finally, the DGIdb database was used to predict targeted drugs for the hub genes for treating scleritis.ResultsA total of 56 genes and proteins were found to be linked to scleritis, and 65 significantly altered pathways were identified in the KEGG analysis (FDR ConclusionsThis study provides key genes and drug targets related to scleritis through bioinformatics analysis. TNF and IL6 are considered key mediators and possible drug targets of scleritis. Five drug candidates may play an important role in the diagnosis and treatment of scleritis in the future, which is worthy of the further experimental and clinical study.</p

    Table_1_Identifying TNF and IL6 as potential hub genes and targeted drugs associated with scleritis: A bio-informative report.docx

    No full text
    BackgroundScleritis is a serious inflammatory eye disease that can lead to blindness. The etiology and pathogenesis of scleritis remain unclear, and increasing evidence indicates that some specific genes and proteins are involved. This study aimed to identify pivotal genes and drug targets for scleritis, thus providing new directions for the treatment of this disease.MethodsWe screened candidate genes and proteins associated with scleritis by text-mining the PubMed database using Python, and assessed their functions by using the DAVID database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to identify the functional enrichment of these genes and proteins. Then, the hub genes were identified with CytoHubba and assessed by protein-protein interaction (PPI) network analysis. And the serum from patients with active scleritis and healthy subjects were used for the validation of hub genes. Finally, the DGIdb database was used to predict targeted drugs for the hub genes for treating scleritis.ResultsA total of 56 genes and proteins were found to be linked to scleritis, and 65 significantly altered pathways were identified in the KEGG analysis (FDR ConclusionsThis study provides key genes and drug targets related to scleritis through bioinformatics analysis. TNF and IL6 are considered key mediators and possible drug targets of scleritis. Five drug candidates may play an important role in the diagnosis and treatment of scleritis in the future, which is worthy of the further experimental and clinical study.</p

    Image_2_Identifying TNF and IL6 as potential hub genes and targeted drugs associated with scleritis: A bio-informative report.tif

    No full text
    BackgroundScleritis is a serious inflammatory eye disease that can lead to blindness. The etiology and pathogenesis of scleritis remain unclear, and increasing evidence indicates that some specific genes and proteins are involved. This study aimed to identify pivotal genes and drug targets for scleritis, thus providing new directions for the treatment of this disease.MethodsWe screened candidate genes and proteins associated with scleritis by text-mining the PubMed database using Python, and assessed their functions by using the DAVID database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to identify the functional enrichment of these genes and proteins. Then, the hub genes were identified with CytoHubba and assessed by protein-protein interaction (PPI) network analysis. And the serum from patients with active scleritis and healthy subjects were used for the validation of hub genes. Finally, the DGIdb database was used to predict targeted drugs for the hub genes for treating scleritis.ResultsA total of 56 genes and proteins were found to be linked to scleritis, and 65 significantly altered pathways were identified in the KEGG analysis (FDR ConclusionsThis study provides key genes and drug targets related to scleritis through bioinformatics analysis. TNF and IL6 are considered key mediators and possible drug targets of scleritis. Five drug candidates may play an important role in the diagnosis and treatment of scleritis in the future, which is worthy of the further experimental and clinical study.</p

    Performance analysis of deep learning-based object detection algorithms on COCO benchmark: a comparative study

    No full text
    Abstract This paper thoroughly explores the role of object detection in smart cities, specifically focusing on advancements in deep learning-based methods. Deep learning models gain popularity for their autonomous feature learning, surpassing traditional approaches. Despite progress, challenges remain, such as achieving high accuracy in urban scenes and meeting real-time requirements. The study aims to contribute by analyzing state-of-the-art deep learning algorithms, identifying accurate models for smart cities, and evaluating real-time performance using the Average Precision at Medium Intersection over Union (IoU) metric. The reported results showcase various algorithms’ performance, with Dynamic Head (DyHead) emerging as the top scorer, excelling in accurately localizing and classifying objects. Its high precision and recall at medium IoU thresholds signify robustness. The paper suggests considering the mean Average Precision (mAP) metric for a comprehensive evaluation across IoU thresholds, if available. Despite this, DyHead stands out as the superior algorithm, particularly at medium IoU thresholds, making it suitable for precise object detection in smart city applications. The performance analysis using Average Precision at Medium IoU is reinforced by the Average Precision at Low IoU (APL), consistently depicting DyHead’s superiority. These findings provide valuable insights for researchers and practitioners, guiding them toward employing DyHead for tasks prioritizing accurate object localization and classification in smart cities. Overall, the paper navigates through the complexities of object detection in urban environments, presenting DyHead as a leading solution with robust performance metrics

    Image_3_Identifying TNF and IL6 as potential hub genes and targeted drugs associated with scleritis: A bio-informative report.tif

    No full text
    BackgroundScleritis is a serious inflammatory eye disease that can lead to blindness. The etiology and pathogenesis of scleritis remain unclear, and increasing evidence indicates that some specific genes and proteins are involved. This study aimed to identify pivotal genes and drug targets for scleritis, thus providing new directions for the treatment of this disease.MethodsWe screened candidate genes and proteins associated with scleritis by text-mining the PubMed database using Python, and assessed their functions by using the DAVID database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to identify the functional enrichment of these genes and proteins. Then, the hub genes were identified with CytoHubba and assessed by protein-protein interaction (PPI) network analysis. And the serum from patients with active scleritis and healthy subjects were used for the validation of hub genes. Finally, the DGIdb database was used to predict targeted drugs for the hub genes for treating scleritis.ResultsA total of 56 genes and proteins were found to be linked to scleritis, and 65 significantly altered pathways were identified in the KEGG analysis (FDR ConclusionsThis study provides key genes and drug targets related to scleritis through bioinformatics analysis. TNF and IL6 are considered key mediators and possible drug targets of scleritis. Five drug candidates may play an important role in the diagnosis and treatment of scleritis in the future, which is worthy of the further experimental and clinical study.</p

    Table_3_Identifying TNF and IL6 as potential hub genes and targeted drugs associated with scleritis: A bio-informative report.docx

    No full text
    BackgroundScleritis is a serious inflammatory eye disease that can lead to blindness. The etiology and pathogenesis of scleritis remain unclear, and increasing evidence indicates that some specific genes and proteins are involved. This study aimed to identify pivotal genes and drug targets for scleritis, thus providing new directions for the treatment of this disease.MethodsWe screened candidate genes and proteins associated with scleritis by text-mining the PubMed database using Python, and assessed their functions by using the DAVID database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to identify the functional enrichment of these genes and proteins. Then, the hub genes were identified with CytoHubba and assessed by protein-protein interaction (PPI) network analysis. And the serum from patients with active scleritis and healthy subjects were used for the validation of hub genes. Finally, the DGIdb database was used to predict targeted drugs for the hub genes for treating scleritis.ResultsA total of 56 genes and proteins were found to be linked to scleritis, and 65 significantly altered pathways were identified in the KEGG analysis (FDR ConclusionsThis study provides key genes and drug targets related to scleritis through bioinformatics analysis. TNF and IL6 are considered key mediators and possible drug targets of scleritis. Five drug candidates may play an important role in the diagnosis and treatment of scleritis in the future, which is worthy of the further experimental and clinical study.</p

    Table_7_Identifying TNF and IL6 as potential hub genes and targeted drugs associated with scleritis: A bio-informative report.docx

    No full text
    BackgroundScleritis is a serious inflammatory eye disease that can lead to blindness. The etiology and pathogenesis of scleritis remain unclear, and increasing evidence indicates that some specific genes and proteins are involved. This study aimed to identify pivotal genes and drug targets for scleritis, thus providing new directions for the treatment of this disease.MethodsWe screened candidate genes and proteins associated with scleritis by text-mining the PubMed database using Python, and assessed their functions by using the DAVID database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to identify the functional enrichment of these genes and proteins. Then, the hub genes were identified with CytoHubba and assessed by protein-protein interaction (PPI) network analysis. And the serum from patients with active scleritis and healthy subjects were used for the validation of hub genes. Finally, the DGIdb database was used to predict targeted drugs for the hub genes for treating scleritis.ResultsA total of 56 genes and proteins were found to be linked to scleritis, and 65 significantly altered pathways were identified in the KEGG analysis (FDR ConclusionsThis study provides key genes and drug targets related to scleritis through bioinformatics analysis. TNF and IL6 are considered key mediators and possible drug targets of scleritis. Five drug candidates may play an important role in the diagnosis and treatment of scleritis in the future, which is worthy of the further experimental and clinical study.</p
    corecore