16 research outputs found

    Origin of Indian Ocean Seamount Province by shallow recycling of continental lithosphere

    No full text
    The origin of the Christmas Island Seamount Province in the northeast Indian Ocean is enigmatic. The seamounts do not form the narrow, linear and continuous trail of volcanoes that would be expected if they had formed above a mantle plume1, 2. Volcanism above a fracture in the lithosphere3 is also unlikely, because the fractures trend orthogonally with respect to the east–west trend of the Christmas Island chain. Here we combine 40Ar/39Ar age, Sr, Nd, Hf and high-precision Pb isotope analyses of volcanic rocks from the province with plate tectonic reconstructions. We find that the seamounts are 47–136 million years old, decrease in age from east to west and are consistently 0–25 million years younger than the underlying oceanic crust, consistent with formation near a mid-ocean ridge. The seamounts also exhibit an enriched geochemical signal, indicating that recycled continental lithosphere was present in their source. Plate tectonic reconstructions show that the seamount province formed at the position where West Burma began separating from Australia and India, forming a new mid-ocean ridge. We propose that the seamounts formed through shallow recycling of delaminated continental lithosphere entrained in mantle that was passively upwelling beneath the mid-ocean ridge. We conclude that shallow recycling of continental lithosphere at mid-ocean ridges could be an important mechanism for the formation of seamount provinces in young ocean basins

    Mantle metasomatism

    No full text
    Mantle metasomatism is a relatively recent concept introduced in the early 1970s when detailed studies of lithospheric mantle rock fragments (xenoliths), brought to the surface of in basaltic to kimberlitic magmas, became widespread. Two main types of metasomatism were defined: modal (or patent) metasomatism describes the introduction of new minerals; cryptic metasomatism describes changes in composition of pre-existing minerals without formation of new phases. A new type of metasomatism is introduced here, stealth metasomatism; this process involves the addition of new phases (e.g. garnet and/or clinopyroxene), but is a “deceptive” metasomatic process that adds phases indistinguishable mineralogically from common mantle peridotite phases. The recognition of stealth metasomatism reflects the increasing awareness of the importance of refertilisation by metasomatic fluid fronts in determining the composition of mantle domains. Tectonically exposed peridotite massifs provide an opportunity to study spatial relationships of metasomatic processes on a metre to kilometre scale. The nature of mantle fluids can be determined from the nature of fluid inclusions in mantle minerals and indirectly from changes in the chemical (especially trace-element) compositions of mantle minerals. Metasomatic fluids in off-craton regions cover a vast spectrum from silicate to carbonate magmas containing varying types and abundances of dissolved fluids and solutes including brines, C-O-H species and sulfur-bearing components. Fluid inclusions in diamond and deep xenoliths reveal the presence of high-density fluids with carbonatitic and hydro-silicic and/or saline-brine end-members. The deep cratonic xenolith data also reinforce the importance of highly mobile melts spanning the kimberlite-carbonatite spectrum and that may become immiscible with changing conditions. A critical conceptual advance in understanding Earth’s geodynamic behaviour is emerging from understanding the linkage between mantle metasomatism and the physical properties of mantle domains recorded by geophysical data. For example, metasomatic refertilisation of cratonic lithospheric mantle increases its density, lowers its seismic velocity and strongly affects its rheology. Introduction of heat-producing elements (U, Th, K) increases heat production, and the key to understanding electromagnetic signals from mantle domains may be closely related to fluid distribution and type (e.g. carbonatitic) and its residence in or between grains. The lithospheric mantle is a palimpsest recording the multiple fluid events that have affected each domain since it formed. These events, involving different fluids and compositions, have repeatedly overprinted variably depleted original mantle wall-rocks. This produces a complex, essentially ubiquitously metasomatised lithospheric mantle, heterogeneous on scales of microns to terranes and perhaps leaving little or no “primary” mantle wall-rock. Decoding this complex record by identifying significant episodes and processes is a key to reconstructing lithosphere evolution and the nature and origin of the volatile flux from the deep Earth through time.63 page(s
    corecore