31,220 research outputs found

    Complex Dynamics of Correlated Electrons in Molecular Double Ionization by an Ultrashort Intense Laser Pulse

    Full text link
    With a semiclassical quasi-static model we achieve an insight into the complex dynamics of two correlated electrons under the combined influence of a two-center Coulomb potential and an intense laser field. The model calculation is able to reproduce experimental data of nitrogen molecules for a wide range of laser intensities from tunnelling to over-the-barrier regime, and predicts a significant alignment effect on the ratio of double over single ion yield. The classical trajectory analysis allows to unveil sub-cycle molecular double ionization dynamics.Comment: 5 pages, 5 figures. to appear in Phys. Rev. Lett.(2007

    Negative Link Prediction in Social Media

    Full text link
    Signed network analysis has attracted increasing attention in recent years. This is in part because research on signed network analysis suggests that negative links have added value in the analytical process. A major impediment in their effective use is that most social media sites do not enable users to specify them explicitly. In other words, a gap exists between the importance of negative links and their availability in real data sets. Therefore, it is natural to explore whether one can predict negative links automatically from the commonly available social network data. In this paper, we investigate the novel problem of negative link prediction with only positive links and content-centric interactions in social media. We make a number of important observations about negative links, and propose a principled framework NeLP, which can exploit positive links and content-centric interactions to predict negative links. Our experimental results on real-world social networks demonstrate that the proposed NeLP framework can accurately predict negative links with positive links and content-centric interactions. Our detailed experiments also illustrate the relative importance of various factors to the effectiveness of the proposed framework

    Topological Quantum Phase Transition in Synthetic Non-Abelian Gauge Potential

    Full text link
    The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases trapped in a honeycomb lattice in the presence of a synthetic non- Abelian gauge potential. We develop a systematic fermionic effective field theory to describe a topological quantum phase transition tuned by the non-Abelian gauge potential and ex- plore its various important experimental consequences. Numerical calculations on lattice scales are performed to compare with the results achieved by the fermionic effective field theory. Several possible experimental detection methods of topological quantum phase tran- sition are proposed. In contrast to condensed matter experiments where only gauge invariant quantities can be measured, both gauge invariant and non-gauge invariant quantities can be measured by experimentally generating various non-Abelian gauges corresponding to the same set of Wilson loops

    Phase diagram as a function of doping level and pressure in Eu1−x_{1-x}Lax_xFe2_2As2_2 system

    Full text link
    We establish the phase diagram of Eu1−x_{1-x}Lax_xFe2_2As2_2 system as a function of doping level x and the pressure by measuring the resistivity and magnetic susceptibility. The pressure can suppress the spin density wave (SDW) and structural transition very efficiently, while enhance the antiferromagnetic (AFM) transition temperature TN_N of Eu2+^{2+}. The superconductivity coexists with SDW order at the low pressure, while always coexists with the Eu2+^{2+} AFM order. The results suggests that Eu2+^{2+} spin dynamics is disentangeld with superconducting (SC) pairing taken place in the two-dimensional \emph{Fe-As} plane, but it can strongly affect superconducting coherence along c-axis

    Resolving and Tuning Mechanical Anisotropy in Black Phosphorus via Nanomechanical Multimode Resonance Spectromicroscopy

    Full text link
    Black phosphorus (P) has emerged as a layered semiconductor with a unique crystal structure featuring corrugated atomic layers and strong in-plane anisotropy in its physical properties. Here, we demonstrate that the crystal orientation and mechanical anisotropy in free-standing black P thin layers can be precisely determined by spatially resolved multimode nanomechanical resonances. This offers a new means for resolving important crystal orientation and anisotropy in black P device platforms in situ beyond conventional optical and electrical calibration techniques. Furthermore, we show that electrostatic-gating-induced straining can continuously tune the mechanical anisotropic effects on multimode resonances in black P electromechanical devices. Combined with finite element modeling (FEM), we also determine the Young's moduli of multilayer black P to be 116.1 and 46.5 GPa in the zigzag and armchair directions, respectively.Comment: Main Text: 13 Pages, 4 Figures; Supplementary Information: 5 Pages, 2 Figures, 2 Table
    • …
    corecore