8 research outputs found

    Postresectional lung injury in thoracic surgery pre and intraoperative risk factors: a retrospective clinical study of a hundred forty-three cases

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Acute respiratory dysfunction syndrome (ARDS), defined as acute hypoxemia accompanied by radiographic pulmonary infiltrates without a clearly identifiable cause, is a major cause of morbidity and mortality after pulmonary resection. The aim of the study was to determine the pre and intraoperative factors associated with ARDS after pulmonary resection retrospectively.</p> <p>Methods</p> <p>Patients undergoing elective pulmonary resection at Adnan Menderes University Medical Faculty Thoracic Surgery Department from January 2005 to February 2010 were included in this retrospective study. The authors collected data on demographics, relevant co-morbidities, the American Society of Anesthesiologists (ASA) Physical Status classification score, pulmonary function tests, type of operation, duration of surgery and intraoperative fluid administration (fluid therapy and blood products). The primary outcome measure was postoperative ARDS, defined as the need for continuation of mechanical ventilation for greater than 48-hours postoperatively or the need for reinstitution of mechanical ventilation after extubation. Statistical analysis was performed with Fisher exact test for categorical variables and logistic regression analysis for continuous variables.</p> <p>Results</p> <p>Of one hundred forty-three pulmonary resection patients, 11 (7.5%) developed postoperative ARDS. Alcohol abuse (p = 0.01, OR = 39.6), ASA score (p = 0.001, OR: 1257.3), resection type (p = 0.032, OR = 28.6) and fresh frozen plasma (FFP)(p = 0.027, OR = 1.4) were the factors found to be statistically significant.</p> <p>Conclusion</p> <p>In the light of the current study, lung injury after lung resection has a high mortality. Preoperative and postoperative risk factor were significant predictors of postoperative lung injury.</p

    Comparison of two protective lung ventilatory regimes on oxygenation during one-lung ventilation: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The efficacy of protective ventilation in acute lung injury has validated its use in the operating room for patients undergoing thoracic surgery with one-lung ventilation (OLV). The purpose of this study was to investigate the effects of two different modes of ventilation using low tidal volumes: pressure controlled ventilation (PCV) vs. volume controlled ventilation (VCV) on oxygenation and airway pressures during OLV.</p> <p>Methods</p> <p>We studied 41 patients scheduled for thoracoscopy surgery. After initial two-lung ventilation with VCV patients were randomly assigned to one of two groups. In one group OLV was started with VCV (tidal volume 6 mL/kg, PEEP 5) and after 30 minutes ventilation was switched to PCV (inspiratory pressure to provide a tidal volume of 6 mL/kg, PEEP 5) for the same time period. In the second group, ventilation modes were performed in reverse order. Airway pressures and blood gases were obtained at the end of each ventilatory mode.</p> <p>Results</p> <p>PaO<sub>2</sub>, PaCO<sub>2 </sub>and alveolar-arterial oxygen difference did not differ between PCV and VCV. Peak airway pressure was significantly lower in PCV compared with VCV (19.9 ± 3.8 cmH<sub>2</sub>O vs 23.1 ± 4.3 cmH<sub>2</sub>O; p < 0.001) without any significant differences in mean and plateau pressures.</p> <p>Conclusions</p> <p>In patients with good preoperative pulmonary function undergoing thoracoscopy surgery, the use of a protective lung ventilation strategy with VCV or PCV does not affect the oxygenation. PCV was associated with lower peak airway pressures.</p

    Biomarkers of acute lung injury: worth their salt?

    Get PDF
    The validation of biomarkers has become a key goal of translational biomedical research. The purpose of this article is to discuss the role of biomarkers in the management of acute lung injury (ALI) and related research. Biomarkers should be sensitive and specific indicators of clinically important processes and should change in a relevant timeframe to affect recruitment to trials or clinical management. We do not believe that they necessarily need to reflect pathogenic processes. We critically examined current strategies used to identify biomarkers and which, owing to expedience, have been dominated by reanalysis of blood derived markers from large multicenter Phase 3 studies. Combining new and existing validated biomarkers with physiological and other data may add predictive power and facilitate the development of important aids to research and therapy
    corecore